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Abstract

Nowadays, congestion of transportation networks is a primary problem that impacts
negatively the quality of life in urban areas. In this thesis we study the behaviour of
transportation networks, whereby users’ choices are modelled in a game-theoretic
framework. We include in our model the heterogeneity of the users, i.e., we consider
that the users may have different preferences on the routes. The heterogeneity is
needed to describe many applications of interest, e.g., users informed by different
routing apps, or users that trade-off differently time and money. The corresponding
game-theoretic models are known as heterogeneous routing games.

In the first part of the thesis we investigate the stability of users’ equilibria
in heterogeneous routing games under evolutionary dynamics, which model how
the users revise dynamically their decision in time. We focus specifically on the
logit dynamics, where users update their actions with the aim of choosing optimal
routes, though suboptimality is sometimes reached due to the presence of noise. We
provide sufficient conditions on the network topology under which convergence to
a stable equilibrium is guaranteed and, when such conditions are not met, we find
sufficient conditions on the properties of the equilibria of the game under which
the considered equilibria are asymptotically stable under the logit dynamics. We
furthermore characterize the fixed points of the logit dynamics in heterogeneous
routing games both in the large and in the vanishing noise regimes. Besides the
theoretical interest, stability under evolutionary dynamics is relevant for control
applications, e.g., for a planner that needs to know in advance which equilibria
are stable and will be reached by evolutionary dynamics, in order to maximize the
efficiency of that particular equilibria.

In the second part of the thesis we focus on network design problems (NDPs).
Specifically, we consider a NDP where the planner can improve one link in the
transportation network, with the goal of minimizing the total travel time experienced
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on the network. The difficulty of the problem lies in its bi-level nature, i.e., it involves
a network optimization given the equilibrium flows under that particular network. We
show that, under suitable assumptions, the total travel time variation corresponding to
intervention on a link can be formulated in terms of electrical quantities on a related
resistor network, and exploit this characterization to propose an efficient algorithm
that selects the optimal link in approximation. We then study the optimality of such
procedure in the limit of infinite networks, and provide sufficient conditions on the
network under which the approximation error vanishes asymptotically.
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Chapter 1

Introduction

1.1 Motivation

In the last few decades the world has become more and more interconnected, and
the movement of people and goods has become pivotal for the proper functioning of
human activities and for the economic health of the countries. Due to the increasing
demand, many cities are facing the problem of traffic congestion, which leads to
increasing levels of pollution and massive waste of time and money [2]. On the other
hand, novel technological advancements like Intelligent Transportation Systems
(ITS), and the recent development in sensing and communicating technologies,
improved the possibilities for feedback control of traffic flows, e.g., by traffic light
timing control, ramp-metering and variable speed limits. For these reasons, the
analysis, design and control of transportation networks have received an increasing
attention in the last years.

A fundamental aspect in traffic modelling is concerned with drivers’ route choices.
In particular, the advent of routing apps, like Google Maps and Waze, has recently
reshaped the habits of transportation networks’ users. While in the past users could
not know the state of the roads in advance, routing apps provide information on
the state of the network in real time, and allow the users to choose optimal routes
given the current congestion of the network. Given the increasing awareness on the
state of the network, a game-theoretic approach appears suitable to model users’
choices in transportation networks. In this representation, users are depicted as
selfish decision-makers, routes as strategies, and the travel time associated to the
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routes as users costs, which depend on the network flow distribution to take into
account congestion effects.

A flow configuration under which no one has incentive in changing route is
called Wardrop equilibrium, from the name of the person who first modelled users of
transportation networks by a game-theoretic approach [3]. However, since Wardrop
equilibria arise from an uncoordinated behaviour, they may be inefficient for the
system. A celebrated quantity to measure the inefficiency of equilibrium flows is the
price of anarchy, defined as the ratio between the total travel time experienced on the
network under Wardrop equilibrium flows, and the total travel time under socially
optimal flows [4–7].

The ultimate goal of control of transportation networks is to reduce congestion.
While a central planner cannot enforce directly a network flow distribution, a first
approach to reduce congestion consists in influencing the users’ choices by incentive-
design mechanisms, in such a way to align individual costs to social costs, and make
users distribute on the network according to socially optimal configurations. This
can be done in practice in many ways, e.g., by imposing monetary tolls that make
the users pay for the externalities of their choices [8], or by information design
mechanisms [9].

Instead of influencing the users’ behaviour, a second approach to reduce conges-
tion consists in intervening directly on the infrastructures, by adding new roads or
improving existing ones. This class of problems is known in the literature as network
design problems (NDPs) [10, 11]. The evaluation of the impact of an intervention on
the infrastructure is quite difficult, and must take into account the strategic behaviour
of the users of the network. A policy-maker that ignores the difference between
socially optimal flows and user optimal flows can incur in catastrophic mistakes,
well illustrated by Braess’ paradox, which shows that improving the transportation
network may in some case lead to a degradation of the performance of the network
if the users are selfish and uncoordinated [12].

An important aspect in game-theoretic traffic models is concerned with users’
preferences. The Wardrop’s model assumes homogeneity of the users, in the sense
that all the users are assumed to take decisions based on identical cost functions.
However, this assumption is quite restrictive when modelling many situations of
interest. To this aim, homogeneous models have been subsequently generalized
to take into account the heterogeneity of the users’ cost functions [13]. Among
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the applications of heterogeneous models we mention: drivers using different TIS,
that take decisions based on different perceived cost functions [14, 15]; when fuel
consumption or monetary tolls constitute a non-negligible fraction of the user cost,
and users have different trade-offs between time and money [16]. From now on,
we refer to heterogeneous routing games to denote game-theoretic models that
incorporate the heterogeneity of users, in contrast with homogeneous routing games,
which do not consider this aspect.

Besides the heterogeneity of the users, another key aspect in game-theoretic traffic
models is the dynamics of network flows. Indeed, the description of the equilibria
made so far is completely static and misses a fundamental question, i.e., whether,
in case the network flows are far from the equilibrium, the flows will converge to
an equilibrium under evolutionary dynamics or not, and which equilibrium will be
reached. The distinction between homogeneous and heterogeneous routing games
has several implications on the properties of the game and in turn on the asymptotic
behaviour of evolutionary dynamics. While the characterization of most of the
evolutionary dynamics in homogeneous routing games is provided in the literature
[17], the characterization in heterogeneous routing games is still an open issue.

Besides the theoretical interest, the stability of the equilibria under evolutionary
dynamics has remarkable implications in practice, and paves the way for control
applications, as illustrated by the following example. Imagine a policy-maker that
designs a tolling scheme with the goal of aligning a certain Wardrop equilibrium
of the game to a socially optimal flow distribution. If the considered equilibrium
is unstable from an evolutionary dynamics perspective, then the equilibrium is not
reached from the dynamics and the planner’s effort to maximize its efficiency is
completely wasted. This example shows how understanding whether the network
flows will converge to an equilibrium, and identifying which one will be reached by
the dynamics in case of multiple equilibria, are fundamental questions for a central
planner.

1.2 Related literature

A large branch of the literature focuses on the modelling of physical aspects of traffic
flows. A classical traffic model is [18], where the movement of cars on highways
is modelled by flows instead of describing single vehicles. Another popular traffic
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model is the cell transmission model (CTM) [19]. This model splits highways in
cells, and models the flow through two cells in terms of the upstream demand and
the downstream supply. The model is then generalized to describe networks in [20].
Generalizations of [20] are then provided in the literature, to consider more refined
rules for flow transmission between cells [21–24]. Traffic flows control has received
large attention in the last years. Among its applications, we mention optimal timing
in traffic lights [25–27, 23, 28], ramp-metering and variable speed limits [29–31].

The mentioned papers consider routing choices as given, without taking the
game-theoretic aspects of the problem into account. The first game-theoretic model
for traffic applications has been proposed by Wardrop in [3]. As already mentioned,
the Wardrop’s model assumes the homogeneity of the users, which however is too
restrictive for many applications of practical interest.

Heterogeneity of the users have been first introduced in [13]. The model assumes
the existence of a finite number of populations of users that differ in the cost functions.
Heterogeneous routing games have been studied to investigate the role of routing
apps in transportation networks [14], how a different knowledge on the available
routes can impact the total travel time experienced on the network [32], or to model
different trade-offs between time and money [16, 8] when the cost experienced by
the users is a combination of the two factors.

Both the models in [3, 13] are non-atomic, i.e., they assume that the number of
users is very large and treat the set of the users as a continuum, and assume that the
action of a single user has a negligible effect on the cost functions. Both [3, 13]
assume the separability of cost functions, i.e., the cost associated to a road depends
only on the flow on the road itself, and assume that the demand is fixed, i.e., not
to travel is not an option for the users. However, a wide variety of routing games
with different settings have been proposed in literature: see for instance [33–35]
for stochastic games in which the travel time is not deterministic due to incomplete
information, [36–38] for games with elastic demand, [39–41] for non-separable
games, [42] for non-separable routing games with elastic demand, and [16] for
games with infinite set of populations. For a complete overview on routing games
we refer to [43].

The first who recognized the difference between system optimal flows and users
optimal flows is Pigou [44]. This difference has been subsequently formalized via
the notion of price of anarchy, which has been extensively studied in the literature
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[4–7]. Among incentive-design mechanisms that aim at minimizing the price of
anarchy in routing games we mention road tolling [45, 8, 46–48], information design
[49, 50, 9, 51] and lottery rewards [52].

As already discussed, an alternative approach to reduce congestion is to improve
the transportation network via network design problems (NDPs). NDPs have been
first proposed in [10]. Both continuous network design problems [53–55], where the
budget can be allocated continuously among the roads, and discrete formulations,
in which the decision variables include which new roads to build [56], how many
lanes to add to existing roads [57], or a mix of those two problems [58], have
been considered in the literature, together with dynamical formulations [59], and
formulations where the optimum is achieved by removing, instead of adding, links
to the network, because of Braess’ paradox [60, 61]. For comprehensive surveys on
the literature on NDP we refer to [62, 11].

Evolutionary game theory has been first formulated in [63] to describe animal be-
haviour in game-theoretic situations, and then applied more generally to the evolution
of strategic choices in game theory [64]. For a complete reference on evolution-
ary dynamics in population games we refer to [17]. Global stability of equilibria
under evolutionary dynamics is established for potential, stable and supermodular
games [17, Chapter 7]. While homogeneous routing games are potential games,
heterogeneous routing games do not belong to any of the mentioned class of games.

To the best of our knowledge, no theoretical results on the global stability under
evolutionary dynamics of Wardrop equilibria of heterogeneous routing games are
provided in the literature. The speed of convergence to Wardrop equilibria in
homogeneous routing games is studied in [65] for no-regrets dynamics, and in [66]
for imitative dynamics, but heterogeneous routing games are not included in the
analysis. In [67] the convergence of evolutionary dynamics in homogeneous atomic
games is investigated. In [68, 69], the authors propose a multiscale model in which
the dynamics of users’ choice are intertwined with the physical dynamics on the
network, but the users are assumed homogeneous.
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1.3 Contributions

In this thesis we focus on two main problems related to game-theoretic traffic models.
We study non-atomic games, which assume that the number of agents is large and
treat the agents’ set as a continuum, in the spirit of population games [17].

In Chapter 3 we investigate the stability of Wardrop equilibria of heterogeneous
routing games under evolutionary dynamics, focusing specifically on the logit dy-
namics, which appears to fit traffic applications better than imitative dynamics.
We provide original results that relate the network topology and properties of the
Wardrop equilibria to the stability of the considered equilibria, and characterize the
asymptotic behaviour of evolutionary dynamics in heterogeneous routing games.
Our first result is that for every heterogeneous routing game, the corresponding logit
dynamics admits a non-empty compact set of fixed points. We show that the set of
fixed points approaches a subset of the Wardrop equilibria of the game (called limit
equilibria) in the limit of vanishing noise, and prove that every strict equilibrium
of the game (i.e., an equilibrium flow under which every population uses a single
route and all the other routes are strictly suboptimal) belongs to the set of the limit
equilibria.

We then investigate the asymptotic behaviour of evolutionary dynamics. Our
second result is that evolutionary dynamics that satisfy certain conditions admit
a globally asymptotically stable fixed point if the network is parallel (i.e., it has
parallel routes from the origin to the destination) or if it is the series composition of
parallel networks. Since the logit dynamics satisfies all the required conditions, we
use the first and the second results to prove that the unique fixed point of the logit
dynamics approaches the set of Wardrop equilibria as the noise vanishes. Such a
result generalizes the stability results in homogeneous routing games to the case of
heterogeneous routing games, under a restrictive assumption on the network topology.
We then characterize the behaviour of the logit dynamics on arbitrary networks, both
in the large and vanishing noise regimes, proving that the dynamics may exhibit a
bifurcation as the noise in the logit dynamics varies, and that strict equilibria are
locally asymptotically stable in the limit of vanishing noise.

Our second main contribution is on network design problems. We study a special
class of NDP, where the planner can improve the delay function of a single link, and
assume that the travel time associated to every link is affine in the flow. We formulate
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the problem in the setting homogeneous games. Our goal is to strike a balance
between a model that is simple enough to guarantee tractable analysis, yet rich
enough to allow insights for more general classes of NDPs. For this class of NDPs,
our first result is that, under a regularity assumption that states that the links that
carry positive flow remain unchanged with an intervention, the social cost variation
corresponding to an intervention on a particular link may be expressed in terms
of electrical quantities on a related resistor network. Specifically, the social cost
variation depends on the effective resistance of the link (i.e., between the endpoints
of the link). Additionally, we show that such a regularity assumption is satisfied
provided that the total incoming flow to the network is large enough and the network
is series-parallel, which may be of independent interest.

We then propose a method based on Rayleigh’s monotonicity laws to approximate
the effective resistance of each link with a number of iterations independent of the
network size, thus leading to a significant reduction of complexity of the NDP. We
then study the optimality of such procedure and provide sufficient conditions on the
network under which the approximation error vanishes asymptotically in the limit of
infinite networks.

For the future we aim at extending the results to more a general setting. On
evolutionary dynamics, we aim at establishing global stability results on arbitrary
network topologies, and investigating other evolutionary dynamics like imitative
dynamics. Furthermore, we could incorporate the physical dynamics of traffic flows
into our model and study the stability properties of the resulting dynamics. On
network design problem, natural directions are to extend the analysis to multiple
interventions, and to incorporate the users’ heterogeneity in the model.

1.4 Organization of the dissertation

The dissertation is organized as follows. In Chapter 2 we introduce the prelimi-
nary notions on transportation networks and routing games that are needed for the
dissertation. Specifically, we provide basic notions on graphs in Section 2.2, and
define network flow optimization in Section 2.3. We then introduce the framework
of population games in Section 2.4, and describe homogeneous routing games and
heterogeneous routing games in Sections 2.5 and 2.6.
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In Chapter 3 we study the asymptotic behaviour of evolutionary dynamics in
heterogeneous routing games. The problem is introduced and motivated in Section
3.1. In Section 3.2 we define evolutionary dynamics, focusing in particular on the
logit dynamics. We then discuss the asymptotic behaviour of the logit dynamics
in homogeneous routing games in Section 3.3. The following sections are devoted
to study the logit dynamics in heterogeneous routing games. In Section 3.4 we
show that the fixed points of the logit dynamics approach the set of the Wardrop
equilibria of the game in the limit of vanishing noise. In Section 3.5 we study the
asymptotic behaviour of evolutionary dynamics on parallel networks and their series
composition. In Section 3.6 we characterize the asymptotic behaviour of the logit
dynamics on arbitrary networks, both in the large and vanishing noise regimes. In
Section 3.7 we discuss conjectures and future research lines. Finally, in Section
3.8 we summarise our contribution. The contents of this chapter are based on the
conference publication [70] co-authored with my advisor Giacomo Como, as well as
on unpublished material that we plan to submit for journal publication. Numerical
simulations reported in this chapter were done in collaboration with Tommaso Toso,
master thesist at Politecnico di Torino.

In Chapter 4 we study NDPs in homogeneous routing games. In Section 4.1 the
problem is introduced and motivated. In Section 4.2 we define formally the model
and formulate the optimization problem. In Section 4.3 we provide the electrical
formulation of the NDP. In Section 4.4 we show that the effective resistance of a
link can be approximated by performing only local computations, and exploit this
fact and our electrical formulation to propose an efficient algorithm that finds an
approximated solution of the original NDP. In Section 4.5 we analyse the asymptotic
performance of our procedure in the limit of infinite networks. In Section 4.6 we
provide numerical simulations on synthetic networks and on real transportation
networks. In Section 4.7 we discuss extension of our approach, and summarize
the work in Section 4.8. These contributions are based on the submitted journal
publication [71], co-authored with Giacomo Como, Asuman Ozdaglar and Francesca
Parise. The research was conducted during my 15 months visit at the Laboratory for
Information and Decision Systems at Massachusetts Institute of Technology.



1.5 Notation 9

1.5 Notation

We let 1n, In denote respectively the dimensional vector of all ones with size n×1,
and the identity matrix n×n. Let 0n×m denote the matrix of size n×m containing all
zero-elements. When indexes are omitted, the size can be deduced from the context.
We let δi denote the vector containing 1 in the i-th component, and zero otherwise,
with the size deducible from the context. Vectors, matrices, and sets are usually
denoted by bold symbols, capital letters, and calligraphic letters, respectively. The
symbol xT denotes the transpose of x. We let Rn, Rn

+, and N denote respectively the
set of real vectors of size n, non-negative real vectors of size n, and natural numbers.
||x||+ denotes the positive part of x, which is 0 if x ≤ 0, and x if x > 0. The symbol
≼ denotes the element-wise inequality between vectors of same size.



Chapter 2

Transportation network preliminaries

2.1 Introduction

In this chapter we introduce the model of transportation network and routing games,
which describe how the users distribute on transportation networks. Specifically, in
Section 2.2 we provide basic notions on multigraphs. In Section 2.3 we introduce
network flow optimization problems. In Section 2.4 we describe population games
framework, that shall be applied in Sections 2.5 and 2.6 to define homogeneous
routing games and heterogeneous routing games.

2.2 Notions on multigraphs

We define multigraph as pairs G = (N ,E), where:

• N is the set of nodes, whose cardinality is N := |N |;

• E is the set of links, whose cardinality is E := |E|. Every link e ∈ E is endowed
with a tail ξ (e) ∈N and a head θ(e) ∈N ;

A link e with ξ (e) = i, θ(e) = j has to be meant as a connection from node i to
node j. Note that multiple links between a pair of nodes are allowed. A multigraph
is called undirected if, for every pair of nodes i, j, the number of links e such
that ξ (e) = i,θ(e) = j equals the number of links l such that ξ (e) = j,θ(e) = i.
Otherwise, it is called directed.
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Definition 2.1 (Path). A path from n0 to nm is a sequence of links (e0,e1, ...,em−1)

such that ξ (e0) = n0,θ(e0) = n1, ξ (e1) = n1,θ(e1) = n2, ..., ξ (em−1) = nm−1,
θ(em−1) = nm and n0 ̸= n1 ̸= ... ̸= nm. When not ambiguous, sometimes we shall
refer to a path by indicating the sequence of nodes (n0,n1, · · · ,nm) instead of the
sequence of links.

We now introduce two-terminal multigraphs, which play a key role in our appli-
cations.

Definition 2.2 (Two-terminal multigraph). A two-terminal multigraph is a multi-
graph endowed with an origin-destination pair (o,d). Paths from o to d are called
routes.

We now introduce the notion of series composition and parallel composition
of two-terminal multigraphs. We denote by R the set of routes of a two-terminal
multigraph, with R := |R|, and let B ∈RN×E denote the node-link incidence matrix,
with entries

Bnl =


1 if n = ξ (l)

−1 if n = θ(l)

0 otherwise.

(2.1)

Observe that B is not full-rank, since any column sums to 0. For two-terminal
multigraphs we can also define the link-route incidence matrix L ∈ RE×R, with
entries

Llr =

1 if l ∈ r

0 otherwise.
(2.2)

Definition 2.3 (Series of two-terminal multigraphs). Two two-terminal multigraphs
G1 and G2 are connected in series if they have a single common node, which is
the destination of G1 and the origin of G2. We let G = S(G1,G2) denote the series
composition of G1 and G2.

Definition 2.4 (Parallel of two-terminal multigraphs). Two two-terminal multigraphs
G1 and G2 are connected in parallel if they have only the origin and the destination
in common. We let G = P(G1,G2) denote the parallel composition of G1 and G2.

Notice that S(G1,G2) and P(G1,G2) are still two-terminal multigraphs. Also, note
that given two multigraphs G1,G2 with routes R1,R2, the route spaces of S(G1,G2)
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Fig. 2.1 From left to right: two parallel multigraphs, their series composition, and their
parallel composition.

and P(G1,G2) are R1 ×R2 and R1 +R2, respectively. We now introduce parallel
multigraphs.

Definition 2.5 (Parallel multigraph). A two-terminal multigraph is called parallel if
its routes are parallel, i.e., every link belongs to one route.

An algebraic characterization of parallel multigraphs can be represented in terms
of the link-route matrix L, by saying that a multigraph is parallel if every row of L
has one non-zero element.

Example 2.1. In Figure 2.1 two examples of parallel multigraphs G1 and G2 are
illustrated, together with their parallel and series composition. The route sets
of G1 and G2 are respectively R1 = {r1 = (e1,e3),r2 = (e2,e4)} and R2 = {r3 =

(e5,e6),r4 = e7}. Note that both the multigraphs are parallel. The routes of S(G1,G2)

are
R1 ×R2 = (r13,r14,r23,r24),

where ri j denotes the concatenation of route ri in G1 and route r j in G2. The routes
of P(G1,G2) are

R1 +R2 = (r1,r2,r3,r4).

Also, note that the parallel composition of two parallel multigraphs is still parallel,
whereas the series composition of two parallel multigraphs is not parallel, since
every link may belong to multiple routes.

Definition 2.6 (Undirected version). Given a multigraph G = (N ,E), its undirected
version is the multigraph GU = (N ,EU) constructed as follows. The node set is the
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same, while the link set EU includes E plus the minimal set of links that makes the
multigraph undirected.

We now define the notion of nearly parallel multigraphs, which has been first
formalized in [1], and shall be used to characterize uniqueness of Wardrop equilibria
in heterogeneous routing games.

Definition 2.7 (Undirected nearly parallel multigraph [1]). A two-terminal undirected
multigraph is nearly parallel if i) it has a single route, or ii) it has two parallel routes,
or iii) can be obtained from a multigraph with two parallel routes at most, by adding
an arbitrary number of parallel paths with common end-nodes.

Definition 2.8 (Directed nearly parallel multigraph). A two-terminal directed multi-
graph is nearly parallel if its undirected version is nearly parallel.

We now introduce the notion of series-parallel multigraph. We start introducing
the notion of undirected series-parallel multigraph, and then extend the definition to
directed multigraphs.

Definition 2.9 (Undirected series-parallel multigraph). A two-terminal undirected
multigraph is series-parallel if (i) it is composed of two nodes o,d, and two opposite
links joining o to d and d to o, respectively; or (ii) it is the result of connecting
two undirected series-parallel multigraphs in parallel; or (iii) it is the result of
connecting two undirected series-parallel multigraphs in series.

The next lemma provides an alternative characterization of undirected-series
parallel multigraphs.

Lemma 2.1 ([72]). Given an undirected two-terminal multigraph, the following
statements are equivalent:

1. the multigraph is series-parallel;

2. for every arbitrary pair of opposite links e1 and e2 such that ξ (e1) = θ(e2),
θ(e1) = ξ (e2), at least one between e1 and e2 does not belong to any route;

3. given two arbitrary nodes n1 and n2, if n1 precedes n2 in a route, then n1

precedes n2 in every route.
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o

a b

d
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a b

d

Fig. 2.2 The Wheatstone multigraph and its undirected version. Missing arrows indicate the
presence of both a link and its opposite one.

A consequence of Lemma 2.1 is that in undirected series-parallel multigraphs
every link has a natural orientation despite the multigraph being undirected, in the
sense that only one of the two opposite links may be traversed by a user that travels
from the origin to the destination without passing twice from any node. This leads to
the definition of directed series-parallel multigraphs.

Definition 2.10 (Directed series-parallel multigraph). A two-terminal directed multi-
graph is series-parallel if (i) its undirected version is a series parallel multigraph,
and (ii) if it is obtained from its undirected version by removing all the links that do
not belong to the route set.

Example 2.2. In Figure 2.2 the Wheatstone multigraph and its undirected version
are illustrated, where links in undirected multigraphs are graphically represented
without arrows. Note that the Wheatstone multigraph is not series-parallel, since
in its undirected version is not. Indeed, in the route (o,a,b,d) the node a precedes
node b, while in the route (o,b,a,d) node b precedes node a.

2.3 Network flow optimization

In this section we present separable convex network flow optimization. Separable
convex network flow optimization arises in several applications, e.g., system optimum
traffic flows, user optimum network flows in homogeneous routing games, and
electrical current flows in resistor networks. Given a multigraph, an exogenous
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network flow is a vector ννν ∈ RN such that

∑
i∈N

νi = 0. (2.3)

A network flow is a vector f ∈ RE satisfying a positivity constraint and a mass
conservation constraints, i.e.,

f ≥ 0, Bf = ννν . (2.4)

Every link is endowed with a separable non-decreasing convex cost function ψe( fe)

such that ψe(0) = 0. Given an exogenous flow ννν and a network with node-link
matrix B, we study the following optimization problem:

f∗ ∈ argmin
f∈RE

+
Bf=ννν

∑
e∈E

ψe( fe). (2.5)

The requirement that the cost for sending a flow is non-decreasing in the flow is quite
natural, as well as ψe(0) = 0, which means that there is no cost for sending zero flow.
Additionally, convexity of ψe( fe) means that the marginal price for sending the flow
is increasing in fe, i.e., the higher is fe the higher will be the cost for sending an
additional infinitesimal amount of flow. Let λλλ ∈RE , γγγ ∈RE denote the Lagrangian
multiplier corresponding to Bf = ννν , and f ≥ 0, respectively. The next statement
establishes necessary conditions for optimality.

Lemma 2.2 ([73]). Consider the optimization problem (2.5). Then:

1. A solution f∗ exists.

2. f∗ is solution of (2.5) if there exists a triple (f∗,λλλ ∗,γγγ∗) satisfying the conditions

ψ ′
e( f ∗e )+ γ∗

θ(e)− γ∗
ξ (e)−λ ∗

e = 0 ∀e ∈ E ,

∑ e∈E :
θ(e)=i

f ∗e −∑ e∈E :
ξ (e)=i

f ∗e +νi = 0 ∀i ∈N ,

λ ∗
e f ∗e = 0 ∀e ∈ E ,

λ ∗
e ≥ 0 ∀e ∈ E ,

f ∗e ≥ 0 ∀e ∈ E .

(2.6)
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3. if for every link ψe( fe) is strictly convex, then (2.6) are also sufficient condi-
tions for optimality.

Eq. (2.6) are known as Karusch-Kuhn-Tucker (KKT). We will not go through the
details of optimization theory. For an in-depth reference about convex optimization
and optimality conditions we refer to [73]. Note that the optimal flows f ∗e depend
on γγγ∗ through the difference γ∗

ξ (e) − γ∗
θ(e), implying that the optimal solution is

undetermined unless the value of γγγ∗ is fixed in an arbitrary node. This is due to the
fact that the node-link matrix B is not full rank. The third condition is known as
complementary slackness, and implies that all the links such that λ ∗

e > 0 carry a zero
flow under the optimal solution, i.e. f ∗e = 0. Network flow optimization are used
to characterize flows in traffic applications. We introduce system-optimum traffic
assignment as an example.

Example 2.3 (System-optimum traffic assignment). Consider a two-terminal multi-
graph G, and assign to every link a non-decreasing convex delay function de( fe).
The system-optimum traffic assignment is network flow that minimizes the total travel
time, i.e., it is the solution of the network flow optimization

argmin
f

∑
l∈E

fldl( fl)

subject to f ≥ 0,Bf = ν .

(2.7)

2.4 Population games and routing games

The notions introduced so far allows to model transportation networks. This section
integrates the previous notions providing tools from game theory, that shall be used
to model how the agents interact on the transportation network. Game theory is a
standard mathematical framework to model interactions between rational agents that
aim at maximizing the utility associated to their action (or equivalently minimizing
the user cost). Within this dissertation, we shall use game theory to describe how
drivers choose their route in a transportation network based on the congestion level
of the roads. In particular, we make use of a specific branch of game theory, known
as population games, which builds on three main assumptions:

• the number of players is very large;
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• a single user choosing a strategy has an infinitesimal effect on users cost
functions;

• players interact anonymously, i.e., the user cost associated to each strategy
is function of how many users are playing every strategy and not of who is
playing what.

In this section, we introduce the basic notions on populations games needed for
this dissertation. For a complete reference on population games we refer to the
monograph from Sandholm [17]. Population games may be defined by following
two different approaches. The first approach is to consider the hydrodynamic limit
of anonymous games with a finite number of players, where the word anonymous
refers to the fact that the user cost associated to the strategies depend on the fraction
of players playing every strategy. A second approach is to define population games
as an independent instance. We follow the second approach, in line with the cited
monograph. For more details on the first approach we refer to [17, Section 11.4]. We
are now ready for a formal definition.

Definition 2.11 (Population games). A population game is a quadruple (P,S,c,τττ),
where

• P = {1, · · · ,P} is the set of populations;

• τττ ∈RP
+ is the vector whose element τ p denotes the total mass of population p.

• S = S1 × ·· · ×SP is the product of strategy sets, where S p = {1, · · · ,np}.
Every player in population p selects a strategy in S p, and the aggregate choices
of players in that population are collected in the strategy distribution zp, with
zp ∈Z p = {zp ∈RSp

+ : ∑i∈Sp zp
i = τ p}. Let the total strategy distribution space

be Z := Z1 ×·· ·×ZP, and n := n1 + · · ·+np;

• c : Z →RS is the vector of user cost functions, whose element cp
i : Z →R is

the user cost of strategy i for a user of population p, which depends on the
strategy distribution of all the populations.

We use the term user cost to avoid confusion with the cost defined in network
flow optimization. Indeed, while user costs refer to cost that a single user aims at
minimizing in a game-theoretic framework, the costs in network flows optimizations
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are to be meant as cost for the whole system. Population games may be distinguished
in homogeneous games, when all the players are identical (P = 1), or heterogeneous
games (P > 1), when players belong to different populations that may differ in the
strategy sets and/or in the user cost functions. This distinction may have many
implications on the properties of the game, as we shall see in details for routing
games in the next sections. An alternative and actually more common definition of
population games involves payoff functions instead of user cost functions. We here
use the notion of user cost which is more suitable to traffic applications, however
the payoff-based formulations may be easily recovered by defining payoffs as the
opposite of user cost functions. As in classical game theory, the notion of Nash
equilibrium is crucial in population games.

Definition 2.12 (Nash equilibrium). A Nash equilibrium is a strategy distribution
z ∈ Z such that, for every population p, every strategy i ∈ S p that is used from
population p is optimal for that population, i.e., for every p ∈ P ,

zp
i > 0 =⇒ cp

i (z)≤ cp
j (z), ∀ j ∈ S p. (2.8)

In other words, a Nash equilibrium is a strategy distribution such that no one has
incentive in changing its strategy, because any alternative strategy has at least the
same user cost of the currently used strategy. The definition immediately implies
that under a Nash equilibrium all the strategies used by an arbitrary population p
share the same user cost. We emphasize that the underlying assumption for this
characterization is that the effects of a single individual on user cost functions are
negligible. An alternative characterization of Nash equilibria can be formulated in
terms of solutions of variational inequalities, as shown in the next proposition.

Proposition 2.1 ([17]). A strategy distribution z is a Nash equilibrium if and only if
satisfies

(y− z)′c(z)≥ 0, ∀ y ∈ Z. (2.9)

We now introduce the notion of potential game.

Definition 2.13 (Potential game). A population game is a potential game if there
exists a scalar function V : Z →R (called potential) such that

cp
i (z)− cp

j (z) =

(
∂

∂ zp
i
− ∂

∂ zp
j

)
V (z). (2.10)
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The population games framework applied to traffic applications leads to the
notion of non-atomic routing games. Non-atomic routing games are a particular
instance of population games, in which the players represent users of a transportation
network, the strategy set is the set of the routes that they can use, and user cost
functions are typically the travel time associated to routes, which are non-decreasing
functions of the total flow on the links, due to congestion effects. We focus on non-
atomic routing games (routing games for simplicity), where the word non-atomic
refers to the fact that a single user has infinitesimal effects on the congestion of the
network, coherently with population game framework.

As anticipated in the introduction, we assume that the user costs are additive,
i.e., the user cost of a route can be expressed as the sum of the user cost of the links
that compose that route, and separable, i.e., the user cost of each link e is a function
of the flow over the link e only. We also assume that the demand does not depend
on the congestion of the network, i.e., not to travel is not an option for the users.
While additivity appears a natural assumption, and is indeed widely assumed in the
literature, separability should be relaxed in many practical cases, e.g., when one
wants to consider how flows on two intersecting roads affects latencies of each other.
However, all these assumptions are quite standard in the literature, and are made
with the purpose of having a model as tractable as possible and are coherent with
homogeneous routing games and heterogeneous routing games proposed respectively
in [3] and [13]. In the next sections we describe in details routing games, tracing a
fundamental distinction between homogeneous routing games, in which users make
decisions based on the same user cost functions, and heterogeneous routing games.
As we shall see later, this distinction has several implications on the properties of the
game.

2.5 Homogeneous routing games

We model transportation networks as two-terminal multigraphs G = (N ,E). Since
the network is two-terminal, the exogenous flow to the network reads

ννν = τ(δo −δd) ∈RN , (2.11)
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where τ > 0 denotes the throughput from the origin o to the destination d, equivalent
to the notion of mass introduced in the previous section. Since in routing games
the strategies correspond to routes, it is natural to express the flows on the network
in terms of route flows. Coherently with feasible strategies in population games, a
feasible route flow is a vector z ∈RR satisfying the non-negativity and conservation
of mass constraints, i.e.,

z ≥ 0, z′1 = τ. (2.12)

The route flow induces a unique link flow f ∈RE
+ via

f = Lz, (2.13)

where L is the link-route incidence matrix, i.e., the flow over a link e is the sum of
the flow over the routes including e. One can prove by using the flow decomposition
theorem [74, Theorem 2.1] that the feasibility of z is equivalent to requiring that
f = Lz is a network flow, as defined in (2.4), i.e., it satisfies the constraints f ≥ 0 and
Bf = ν . We assume that every link is endowed with a continuously differentiable
delay function de : R+ → R+, which is assumed dependent on fe and not on the
whole f because of separability assumption. Delay functions are also assumed non-
decreasing. The user cost of a route r, under flow distribution f, is additive, i.e., it is
the sum of the delays of the links belonging to that route,

cr(f) = ∑
l∈E

Llrdl( fl). (2.14)

When user cost functions are denoted by cr(z), we shall implicitly assume that the
link flows are the one induced by (2.13). In homogeneous routing games all the users
share the set of delay functions, thus the index p for the population may be omitted.

Definition 2.14 (Homogeneous routing game). A homogeneous routing game is a
triple (G,d,τ), where the transportation network G is a two-terminal multigraph,
and d is the set of delay functions of the links.

We denote routing games by (G,d,τ), in contrast with population games that are
defined by (P,c,τ). The omission of P is motivated by the fact that in homogeneous
games it always holds P = 1. Moreover, there exists a unique mapping from (G,d)
to c via (2.14), which allows to derive from the heterogeneous routing game the
corresponding notation for the population game. We prefer to keep the notation
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(G,d,τ) in this context because the notion of delay associated to link is standard in
the literature of routing games.

The notion of user equilibrium in routing games has been first introduced by
Wardrop. A Wardrop equilibrium is a flow distribution such that "the journey times
on all routes actually used are equal, and less than those which would be experienced
by a single vehicle on any unused route" [3]. This definition is equivalent to Nash
equilibrium in the setting of population games. However, for historical reasons,
we refer to Wardrop equilibria to denote the Nash equilibria of non-atomic routing
games.

Definition 2.15 (Wardrop equilibrium). A route flow z∗ is a Wardrop equilibrium if
for every route r

z∗r > 0 =⇒ cr(z∗)≤ cq(z∗), ∀q ∈R.

We refer to f∗ as Wardrop equilibrium if there exists a Wardrop equilibrium
z∗ such that f∗ = Lz∗. A classical result is that homogeneous routing games are
potential games, and the potential function of the game is separable and convex.
Hence, Wardrop equilibria are solutions of convex separable optimization problems.

Theorem 2.1 ([36]). A link flow f∗ is a Wardrop equilibrium of a homogeneous
routing game if and only if it solves the minimization problem

f∗ ∈ argmin
f∈RE

+
Bf=ννν

∑
l∈E

∫ fl

0
dl(s)ds. (2.15)

A consequence of Theorem 2.1 is that there is a one-to-one correspondence
between Wardrop equilibria of homogeneous routing games and solution of the
network flow optimization (2.15). This fact has several remarkable implications that
follow from network flow optimization theory (see Section 2.3). First, a Wardrop
equilibrium always exists. Second, if the delay functions are assumed strictly
increasing, the objective function is strictly convex and the Wardrop equilibrium
f∗ is unique. Theorem 2.1 might be enunciated in terms of z by replacing fl with
(Lz)l in (2.15) and requiring the feasibility of z instead of Bf = ννν . However, the
uniqueness of Wardrop equilibrium in terms of route flow distributions does no
longer hold. Indeed, in such a formulation, the problem is only convex in z, and thus
the game may admit a continuum of equilibrium route flow distributions, all of them
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inducing equivalent network flow f∗. A third observation that shall be analysed in
details in Chapter 3 is that the equilibria are stable under evolutionary dynamics.
We now introduce the KKT conditions of problem (2.15), which provide sufficient
and necessary conditions under which a flow f∗ is a Wardrop equilibrium. Similar
conditions may be established for z∗. For convenience, coherently with network flow
optimization framework, we here analyse optimality conditions of (2.15) in terms of
link flows f∗. However, with a slight abuse of notation we say that z∗ solves (2.15)
if f∗ = Lz∗ solves (2.15). We recall that γγγ and λλλ denote the Lagrangian multipliers
associated Bf = ννν , and f ≥ 0, respectively. As shown in Section 2.3, a necessary
condition for optimality of f∗ is the existence of a triple (f∗,λλλ ∗,γγγ∗) that satisfies the
following KKT conditions:

de ( f ∗e )+ γ∗
θ(e)− γ∗

ξ (e)−λ ∗
e = 0 ∀e ∈ E ,

∑ e∈E :
θ(e)= j

f ∗e −∑ e∈E :
ξ (e)= j

f ∗e +ν j = 0 ∀ j ∈N ,

λ ∗
e f ∗e = 0 ∀e ∈ E ,

λ ∗
e ≥ 0 ∀e ∈ E ,

f ∗e ≥ 0 ∀e ∈ E .

(2.16)

Recall that, since B is not full-rank, the equilibrium f ∗e depend on γγγ∗ through the
difference γ∗

θ(e)− γ∗
ξ (e), implying that (2.16) is undetermined unless the value of γγγ∗

is fixed in an arbitrary node. Given a network flow f (or a route flow distribution z)
the total travel time spent on the network is

C(f) = ∑
l∈E

fldl( fl). (2.17)

From now on, we consider homogeneous routing games with a unique Wardrop
equilibrium f∗, and define the social cost as the total travel time at the equilibrium.

Definition 2.16 (Social cost). Let f∗ be the unique Wardrop equilibrium of a routing
game (G,d,τ) with strictly increasing delay functions. The social cost is

C(f∗) = ∑
l∈E

f ∗l dl( f ∗l ).

The next proposition shows that the social cost depends only on the difference
between the optimal Lagrangian multipliers in o and in d.
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Fig. 2.3 A simple game revealing the externality due to uncoordinated behaviour of the users.

Proposition 2.2. Let (G,d,τ) be a routing game. Then,

C(f∗) = τ(γ∗o − γ
∗
d ).

Proof. We first show that the user cost of every used route, i.e., a route composed
of links with positive flows, equals γ∗o − γ∗d . Consider a used route r = (e1,e2, ...es),
with ξ (e1) = o, θ(es) = d, and θ(ei) = ξ (ei+1) for every 1 ≤ i < s. Thus,

cr(f∗) =
s

∑
i=1

dei( f ∗ei
) =

s

∑
i=1

(γ∗
ξ (ei)

− γ
∗
θ(ei+1)

+λ
∗
ei
) = γ

∗
o − γ

∗
d .

The first equivalence follows from the definition of route user cost, while the second
and the third one from KKT conditions, in particular the third one from complemen-
tary slackness. Thus, for every z∗ such that f∗ = Lz∗,

C(f∗) = ∑
l∈E

f ∗l dl( f ∗l ) = ∑
l∈E

dl( f ∗l ) ∑
r∈R

Llrz∗r

= ∑
r∈R

z∗r ∑
l∈E

Llrdl( f ∗l ) = ∑
r∈R

z∗r cr(f∗) = (γ∗o − γ
∗
d ) ∑

r∈R
z∗r = τ(γ∗o − γ

∗
d ),

concluding the proof.

Let us denote by fopt the notion of system-optimum traffic assignment (or optimal
flow) introduced in Example 2.3. which is the feasible network flow minimizing the
total travel time. The optimal flow fopt is the flow distribution that a central planner
would enforce in the network to minimize the total travel time, in contrast with
equilibrium flows, which arise from a selfish uncoordinated behaviour of the users.
The ratio between the social cost and the optimal cost is known as price of anarchy.
We now present two classical examples of homogeneous routing games. The first
one is known as Pigou’s example, from the name of the person who first recognized
the notion of externality and price of anarchy in games [44]. The second example
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Fig. 2.4 A homogeneous game showing that removing a link (e3 in this case) may lead to an
improvement of the total travel time.

is known as Braess’ paradox, who first showed that improving the transportation
network may impact negatively on the congestion of the network, when the users are
selfish and uncoordinated [12].

Example 2.4 ([4]). Consider the homogeneous routing game in Figure 2.3. The
unique Wardrop equilibrium is f ∗1 = 1, f ∗2 = 0. The social cost is

C(f∗) = f ∗1 ·d1( f ∗1 )+ f ∗2 ·d2( f ∗2 ) = 1 ·1+0 ·1 = 1.

The optimal flow is f opt
1 = 1/2, f opt

2 = 1/2, corresponding to cost C(fopt) = 1/2 ·
1/2+1/2 = 3/4. The price of anarchy is thus 4/3.

Example 2.5 (Braess). Consider the homogeneous routing game in Figure 2.4.
By some computations we obtain the Wardrop equilibrium f ∗1 = f ∗5 = 3/8, f ∗3 =

1/4, f ∗2 = f ∗4 = 1/8. The corresponding social cost is C(f∗) = 7/8. Consider now
the network obtained by removing e3 in the previous example. The new equilibrium is
f ∗1 = f ∗2 = f ∗4 = f ∗5 = 1/4, and the corresponding social cost is C(f∗) = 3/4 < 7/8.
Thus, removing link e3 yields a lower social cost.

The first example shows that the uncoordinated behaviour of the users may lead
to a large cost in terms of total travel time experienced on the network, compared
to optimal flows. To reduce this effect, an approach proposed in the literature is to
influence the behaviour of the users in such a way to align Wardrop flows to optimal
flows. A second main approach proposed in the literature to reduce congestion is to
intervene directly on the network, by adding new links or improving existing ones.
However, the second example shows that in presence of uncoordinated users this
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must be done carefully, because improving the transportation network may lead to
a degradation of the performances of the network. Intervention on transportation
network in homogeneous routing games is the subject of Chapter 4. In the next
section, we present heterogeneous routing games.

2.6 Heterogeneous routing games

In homogeneous routing games it is assumed that users make decisions based on
identical preferences and strategy sets, which is a quite restrictive assumption. In fact,
typically the users of a transportation network are not identical, e.g., do not have the
same information on the state of the streets, or may travel between different origins
and destinations. Heterogeneous routing games are a generalization of homogeneous
games whereby users belong to populations that may differ in the origin-destination
pair, the route set, and the delay functions. Heterogeneous games have been proposed
in [13], and have been widely studied in the literature, e.g. to investigate the value
of information provided by routing apps [9, 15, 51] in heterogeneous populations,
to model users that have a different knowledge on the available routes [32] or on
the state of the streets [75]. Heterogeneous routing games are also considered to
model users that trade-off money and time in a different way [16, 8]. Heterogeneous
routing games stimulated a lot of interest in the community also from a theoretical
perspective. The crucial difference between homogeneous and heterogeneous routing
games is that the latter are not in general potential games, which in turn implies that
existence, uniqueness, and stability of equilibria under evolutionary dynamics do
not trivially follow. However, if users differ only in the origin-destination pairs and
the set of available routes, the game still admits a potential function [17, 43], which
makes this case less interesting from a theoretical perspective. For this reason, we
here consider the case where users differ in the delay functions and for simplicity
restrict our analysis to the case of single origin-destination pair for all the populations.

More formally, let the transportation network be a two-terminal multigraph G,
and let P denote the set of populations, whose cardinality P = |P| is assumed finite
(see e.g. [76, 16] for generalizations to infinite-populations setting, where every
single user has personal preferences). We here assume that every population has the
same origin-destination pair o-d, and denote by τ p ≥ 0 the throughput that travels
from o to d. The populations differ from each other in the assignment of delay
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functions over the link set. An admissible route flow distribution for a population
p ∈ P is a vector zp ∈RR

+ satisfying the throughput constraint, i.e., 1T zp = τ p. For
a given route flow vector zp, the (unique) link flow distribution is obtained via

fp = Lzp, (2.18)

Let the aggregate link flow distribution and aggregate route flow distribution be

fagg = ∑
p∈P

fp, zagg = ∑
p∈P

zp, (2.19)

respectively. Let dp
e :R+ →R+ be the delay function of population p ∈ P on the

link e ∈ E . We assume that for every population p and link e the delay function dp
e (·)

depends on the aggregate flow f agg
e over the link itself. We further assume that delay

functions are continuously differentiable and non-decreasing in f agg
e . We remark

that the populations differ from each other in their delay functions, however the
delay on every link depends on the total flow on the link, which looks a reasonable
assumption. The user cost of route r ∈ R for population p is the sum of delay of
links belonging to the route, i.e.,

cp
r (z) = ∑

e∈E
Lerdp

e ( f agg
e ), (2.20)

where, given z, the aggregate link flow distribution fagg is computed by (2.18) and
(2.19).

Definition 2.17. A heterogeneous routing game is a quadruple (G, P , d,τττ), where G
is a two-terminal directed multigraph, τττ is the vector of throughputs, and d denotes
the vector containing the delay functions for each link and population.

The notion of Wardrop equilibrium in heterogeneous game is equivalent to Nash
equilibria in heterogeneous population games, and is the natural generalization of
homogeneous games.

Definition 2.18 (Wardrop equilibrium). A Wardrop equilibrium z∗ for the heteroge-
neous routing game is a feasible route flow such that for every population p ∈ P ,
and route r ∈R

(z∗)p
r > 0 ⇒ cp

r (z
∗)≤ cp

q(z
∗) ∀q ∈R. (2.21)
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Fig. 2.5 Since the delay functions are in the form dp
e ( f agg

e ) = de( f agg
e )+ t p

e , this routing game
admits a potential function despite being heterogeneous.

Thus, at Wardrop equilibrium, no one can unilaterally decrease his user cost
by changing route, since every route used by a population p has the minimal user
cost (measured by the population p itself) among all the routes. As anticipated,
heterogeneous routing games do not admit in general a potential function. The next
proposition provides a sufficient and necessary condition under which a heteroge-
neous routing game admits a potential function.

Proposition 2.3 ([39, 17]). A heterogeneous game (G, P , d,τττ) is potential if and
only if, for every pair of populations p,q and routes i, j,

∑
e∈i∩ j

(dp
e )

′( f agg
e ) = ∑

e∈i∩ j
(dq

e )
′( f agg

e ). (2.22)

A class of heterogeneous games that admit a potential functions are the games
with delay functions in the form

dp
e ( f agg

e ) = de( f agg
e )+bp

e , (2.23)

where de( f agg
e ) is a flow-dependent delay that does not depend on the population p

and bp
e is a constant independent of p.

Example 2.6. Consider a network with two nodes and two parallel links joining o to
d, and a game with P = 2, with delay functions as in Figure 2.5. Note that the game
admits a potential function, since delay functions are in the form (2.23). We now
verify that

V (f) =
( f 1

1 + f 2
1 )

2

2
+ f 1

1 +2 f 2
1 +( f 1

2 + f 2
2 )

2 + f 1
2 ,
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is a potential for the game. Indeed,

∂V
∂ f 1

1
= f 1

1 + f 2
1 +1 = d1

1( f agg
1 )

∂V
∂ f 2

1
= f 1

1 + f 2
1 +2 = d2

1( f agg
1 )

∂V
∂ f 1

2
= 2 f 1

2 +2 f 2
2 +1 = d1

2( f agg
2 )

∂V
∂ f 2

2
= 2 f 1

2 +2 f 2
2 = d2

2( f agg
2 ).

By noticing that for the considered network there is a one-to-one correspondence
between links and routes, we conclude by (2.10) that the game is a potential game.

The last example shows that a potential function may exist even in heterogeneous
games. However, this is not usually the case, unless we consider games satisfying
restrictive conditions on the delay functions. The existence and uniqueness of
equilibria in homogeneous routing games have been proved by using tools from
network flow optimization, which cannot be applied to non-potential games. It is
natural then to ask whether existence and uniqueness of equilibria still hold even for
non-potential heterogeneous games.

2.6.1 Existence and uniqueness of equilibria

Since Wardrop equilibria of heterogeneous games correspond to Nash equilibria
of population games, Proposition 2.1 states that Wardrop equilibria correspond the
solutions of a variational inequality. This observation is helpful for the characteri-
zation of the Wardrop equilibria of heterogeneous games. We point out that such a
characterization holds also for more general formulations, e.g., non-separable games,
which however are not considered in this dissertation. We now show that every
heterogeneous game admits at least a Wardrop equilibria, and that the set of Wardrop
equilibria is compact.

Proposition 2.4. Let Z∗ denote the set of Wardrop equilibria of an arbitrary hetero-
geneous routing game. Then, Z∗ is non-empty and compact.

Proof. The existence of at least a Wardrop equilibria is proved in [17, Theorem
2.1.1] by using fixed point techniques. Since Z∗ ⊆Z , boundedness of Z∗ follows
from boundedness of Z . The closeness of Z∗ follows from the characterization of
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Wardrop equilibria in terms of variational inequalities, from continuity of user cost
functions c, and closeness of Z .

The existence of at least one Wardrop equilibrium has been also proved by
Schmeidler in [76] even in a more general setting, that allows every user to belong to
a different population (which is equivalent to consider infinite populations). We ad-
ditionally mention a conceptually different proof, due to Farokhi et al. [77, Theorem
3.3], which exploits the equivalence between Wardrop equilibria in heterogeneous
routing games and Nash equilibria in an related abstract game, which has finite
number of players (corresponding to populations) and a continuous strategy set. In
contrast with the homogeneous games, in which the equilibrium is always unique
under the assumption that delay functions are strictly increasing, uniqueness of
equilibrium in terms of network flows is not guaranteed to hold in heterogeneous
games, as illustrated in the next example. We first provide the definition of essential
uniqueness of Wardrop equilibria.

Definition 2.19 (Essentially unique equilibrium). Consider a heterogeneous routing
game, and let Z∗ the set of its Wardrop equilibria. The equilibrium is said to be
essentially unique if for every z,y ∈ Z∗ the aggregate network flows fagg induced by
z and y are equivalent, i.e.,

fagg = ∑
p∈P

Lzp = ∑
p∈P

Lyp. (2.24)

Example 2.7. Consider the game in Figure 2.6, and let

r1 = (e1,e2), r2 = (e1,e3), r3 = (e4,e5), r4 = (e4,e6).

Note from the delay functions that every population has two available routes. Specif-
ically, population 1 can use routes r1 and r4, population 2 can use routes r1 and
r3, and population 4 can use routes r2 and r4. By some computations, we find three
Wardrop equilibria, with corresponding aggregate network flows:

1.


z1

1 = 1.2, z1
4 = 0

z2
1 = 0, z2

3 = 1,

z3
2 = 0, z3

4 = 1.

→


f agg
1 = f agg

2 = 1.2

f agg
3 = 0, f agg

4 = 2

f agg
5 = f agg

6 = 1
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Fig. 2.6 A heterogeneous routing games possessing multiple Wardrop equilibria. A blank in
the table means that the delay associated to the link is so high that is never rational to use it.

2.


z1

1 = 0, z1
4 = 1.2

z2
1 = 1, z2

3 = 0

z3
2 = 1,z3

4 = 0.

→


f agg
1 = 2, f agg

2 = 1

f agg
3 = 1, f agg

4 = 1.2

f agg
5 = 0, f agg

6 = 1.2

3.


z1

1 = 3/5, z1
4 = 3/5

z2
1 = 10/21, z2

3 = 11/21

z3
2 = 11/21, z3

4 = 10/21

→


f agg
1 = 8/5, f agg

2 = 113/105

f agg
3 = 11/21, f agg

4 = 8/5

f agg
5 = 11,21, f agg

6 = 113/105

Note that the three equilibria are essentially different, in the sense that they induce
different aggregate link flows.

Example 2.7 shows that in general uniqueness and even essential uniqueness are
not guaranteed to hold in heterogeneous routing games. Konishi proved in [78] that
essential uniqueness holds on series of parallel networks. Milchtaich extended these
results, and constructed a beautiful theory on the role of the network topology for
uniqueness of the equilibria in two-terminal networks [1]. The next example shows
that even if the network is parallel and the equilibrium is essentially unique, i.e.,
aggregate flows are unique under Wardrop equilibria, a continuum of equilibria in
terms of population flows may exist.

Example 2.8. We consider the multigraph with N = {o,d}, and two parallel links
joining o to d. Consider a routing game with two populations and affine delay
functions

dp
e ( f agg

e ) = ap
e f agg

e +bp
e . (2.25)
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We assume without loss of generality bp
1 = 0 for every population p, since the Wardrop

equilibria depend on the difference bp
2 −bp

1 only. We aim at finding conditions under
which an internal Wardrop equilibrium exists, i.e., a Wardrop equilibrium such that
( f ∗)p

e > 0 for every link e and population p. By letting for simplicity of notation
f ∗e := ( f ∗)agg

e , such a Wardrop equilibrium satisfies dp
1 ( f ∗1 ) = dp

2 ( f ∗2 ) for both the
populations. It follows a1

1 f ∗1 = a1
2 f ∗2 +b1

2,

a2
1 f ∗1 = a2

2 f ∗2 +b2
2,

(2.26)

which admits solution if and only if a1
1a2

2 − a2
1a1

2 ̸= 0. By some computation, the
solution gets:

f ∗1 =
b1

2a2
2 −b2

2a1
2

a2
2a1

1 −a1
1a1

2
, f ∗2 =

b1
2a2

1 −b2
2a1

2
a2

2a1
1 −a1

1a1
2
, (2.27)

which of course is unique given the uniqueness result from Konishi. An internal
equilibrium may exist only if τ1 + τ2 = f ∗1 + f ∗2 . Additional conditions are that
b1

2a2
2−b2

2a1
2, b1

2a2
1−b2

2a2
2, and a1

1a2
2−a2

1a1
2 are either all non-negative or non-positive,

to ensure positivity of f ∗1 and f ∗2 . The population flows at Wardrop equilibrium (we
omit the index ∗ for convenience of notation) are

f 1
1 = f 1

1 ,

f 2
1 = f ∗1 − f 1

1 ,

f 1
2 = τ1 − f 1

1 ,

f 2
2 = f ∗2 − τ1 + f 1

1 ,

(2.28)

showing that the game admits a continuum of equilibria. We now present the
uniqueness results from Milchtaich [1]. Such results are originally established for
undirected networks, but the directionality of the links may be recovered by assigning
infinite delay to links in certain directions.

Definition 2.20 (Uniqueness property). A multigraph G is said to have the uniqueness
property if every heterogeneous game (G, P , d,τττ), admits an essentially unique
Wardrop equilibrium.

Proposition 2.5 ([1]). Every (series composition of) nearly parallel multigraph(s)
has the uniqueness property. Moreover, if G is not a (series composition of) nearly
parallel multigraph(s), there always exists a game (G, P , d,τττ) such that the Wardrop
equilibrium is not essentially unique.
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In the next chapter we introduce evolutionary dynamics, and investigate the
stability of equilibria in heterogeneous routing games under evolutionary dynamics,
in relation with the network topology.



Chapter 3

Evolutionary dynamics in routing
games

3.1 Introduction

Evolutionary game theory have been first defined by Maynard Smith in [63] to
describe animal behaviour in game-theoretic situations, and then applied more
generally for the description of the evolution of strategic choices in game theory
[64]. So far, the interactions between users have been defined in a static fashion.
The notion of Wardrop equilibrium is of large importance in the literature of routing
games. The underlying assumption is that equilibrium flows are equivalent to the
network flows observed in real applications. However, this assumption is not always
justified and requires to be further motivated. In this chapter we investigate stability
properties of Wardrop equilibria in heterogeneous routing games under evolutionary
dynamics, which model how the users revise their decisions dynamically in time.
We focus specifically on the logit dynamics, where users update their actions with
the aim of choosing optimal routes, though suboptimality is sometimes reached due
to the presence of noise. The noise is typically introduced to model uncertainty on
the state of the network, or sub-rationality of the users.

From a theoretical perspective, it is known that in homogeneous routing games
most of the evolutionary dynamics introduced in the literature converge to the
set of the Wardrop equilibria or to perturbations of them [17]. Specifically for
the logit dynamics, one can show that the corresponding logit dynamics admits a
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globally asymptotically stable fixed point, which approaches the set of the Wardrop
equilibria of the game as the noise vanishes. However, these results rely on the fact
that homogeneous routing games are potential games, and cannot be extended to
heterogeneous routing games, since the latter do not admit in general a potential
function [41, 77, 17]. As discussed in Chapter 1, many applications of interest require
to introduce users’ heterogeneity, e.g., to model users that receive information by
different routing apps [14, 15], or to model users that have different sensitivity to
time and money [8, 16].

To the best of our knowledge, no results on global stability of evolutionary
dynamics in heterogeneous routing games are provided in the literature. In most of
the literature dealing with heterogeneity of the users in routing games, a big effort is
spent to analyse the properties of the equilibria of the game, but the stability of such
equilibria is usually not investigated [14, 75, 9, 15, 16]. The speed of convergence
of no-regrets dynamics and imitative dynamics are analysed in [65] and [66], but in
the considered games the populations differ only in the origin-destination set and not
in the delay functions. In the monograph from Sandholm [17], results on the global
stability of equilibria in stable, potential or supermodular games are provided, which
however do not include the case of heterogeneous routing games.

Our contribution is the following. We characterize the fixed point of the logit
dynamics in the limit of vanishing noise, as well as the asymptotic behaviour of
evolutionary dynamics, focusing specifically on the logit dynamics. We provide suffi-
cient conditions on the network topology and properties of the evolutionary dynamics
under which the dynamics admit a globally asymptotically stable fixed point. Under
a suitable assumption on the network topology, our results generalize the global
stability under the logit dynamics of Wardrop equilibria of heterogeneous routing
games. Additionally, we characterize the logit dynamics on arbitrary networks both
in the large noise regime and in the vanishing noise regime.

The chapter is organized as follows. In Section 3.2 we introduce evolutionary
dynamics and their properties, focusing specifically on the logit dynamics. In Section
3.3 we analyse the asymptotic behaviour of the logit dynamics in homogeneous
routing games. In Section 3.4 we analyse the fixed points of the logit dynamics
in heterogeneous routing games. In Section 3.5 we investigate the behaviour of
evolutionary dynamics on (series of) parallel networks. In Section 3.6 we study
the asymptotic behaviour of the logit dynamics on arbitrary networks. Finally, we
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discuss conjectures and future research lines in Section 3.7, and summarize the
contribution in Section 3.8. The notions on continuous-time dynamical systems
needed in this chapter are contained in Appendix B.

For simplicity of notation, we refer to transportation networks by using graph-
theoretic notions of the multigraph that models the network, e.g., parallel network,
series of composition of networks, etc.

3.2 Evolutionary dynamics

We introduce the notion of evolutionary dynamics for routing games. We adopt
from the beginning the notation of routing games, although these notions may be
defined for arbitrary population games. Evolutionary dynamics are continuous-time
dynamical systems, which describe how users revise dynamically their decisions in
time. Evolutionary dynamics are fully characterized by the associated interaction
kernel. We let Θp :RR×P →RR×R×P

+ denote the interaction kernel of population p,
whose element Θ

p
i j(z) indicates the rate at which users of population p who are using

route i switch to route j, as a function of the route distribution z. Given interaction
kernel, the associated evolutionary dynamics are continuous-time dynamical systems,
(Rn,g), with g :Rn →Rn whose components gp

i read

żp
i = gp

i (z) = ∑
j∈R

(
zp

j Θ
p
ji(z)− zp

i Θ
p
i j(z)

)
. (3.1)

The first term indicates users using other routes that switch to i, while the second one
indicates users that switch to other routes from the route i. Evolutionary dynamics
are called

• target, if its interaction kernels Θ
p
ab(z) do not depend on a. In such a case,

they may be written as
Θ

p
ab(z)≡ Θ

p
b(z); (3.2)

• exact target, if they are target and for every admissible z and population p it
holds

∑
b∈R

Θ
p
b(z) = 1; (3.3)
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In other words, evolutionary dynamics are target if the route adopted by a user
after a strategy revision does not depend on the current route, but only on the route
distribution z. Exact target dynamics additionally require that the rate at which the
users revise their strategy is a constant independent of z and population p. The next
lemma states that exact target dynamics may be written in a simplified form.

Lemma 3.1. Z is invariant under exact target evolutionary dynamics. Furthermore,
evolutionary dynamics on Z read

żp
i = τ

p
Θ

p
i (z)− zp

i (3.4)

for every population p ∈ P and route i ∈R.

Proof. Consider z ∈ Z , i.e., 1′zp = τ p for every p. From (3.1)

żp
i = ∑

j∈R
zp

j Θ
p
ji(z)− ∑

j∈R
zp

i Θ
p
i j(z) (3.5)

= ∑
j∈R

zp
j Θ

p
i (z)− zp

i ∑
j∈R

Θ
p
j (z) (3.6)

= τ
p
Θ

p
i (z)− zp

i , (3.7)

where the second equivalence follows from (3.2) and the third one from (3.3) and
from z ∈ Z . The invariance of Z follows from

∑
i∈R

żp
i = ∑

i∈R

(
τ

p
Θ

p
i (z)− zp

i
)
= τ

p − τ
p = 0, (3.8)

which concludes the proof.

From now on we restrict our analysis to exact target evolutionary dynamics, and
consider initial conditions belonging to Z . Since Z is invariant under exact target
dynamics, we consider without loss of generality evolutionary dynamics in the form
(3.4). We now define two properties to characterize evolutionary dynamics. The
first may be defined for every population game, while the second one is specific for
routing games. We call evolutionary dynamics:

• monotone, if for every pair z, z̃, route a and population p satisfying the relation

cp
a(z)≤ cp

a(z̃), cp
b(z)≥ cp

b(z̃) ∀b ̸= a (3.9)
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implies that
Θ

p
a(z)≥ Θ

p
a(z̃). (3.10)

• decoupled if for any G = S(G1,G2), the choices on the two subnetworks are
decoupled, i.e., if r ∈ R is the route of G composed of the series of routes
i ∈R1 and j ∈R2, then

Θ
p
r (z) = Θ

p
i (zG1)Θ

p
j (zG2), (3.11)

where zG1 (same arguments apply to zG2) is the projection of the route flow
distribution on G1, whose i-th component is

zi∗ := ∑
j∈R2

zi j,

and zi j denotes the flow on the route of G composed of route i ∈R1 in series
with route j ∈R2.

A few comments on these properties follow. Under monotonicity assumption, adding
some flow to route b makes any parallel route a (i.e., a route not sharing any link
with b) more attractive to the users. Monotonicity thus appears suitable for routing
games, where users aim at avoiding more congested routes. The decoupling of the
choices on series of networks is natural as well. A popular exact target dynamics
satisfying the properties defined above is the logit dynamics, which arises from the
mean-field limit (in the spirit of Kurtz’s theorem [79]) of the noisy best response
dynamics of classical game theory.

3.2.1 Logit dynamics

The logit dynamics is defined by the interaction kernels

Θ
p
i (z,η) =

exp(−η · cp
i (z))

∑ j∈R exp(−η · cp
j (z))

, (3.12)

and reads therefore

żp
i = τ

p exp(−η · cp
i (z))

∑ j∈R exp(−η · cp
j (z))

− zp
i , ∀p ∈ P, i ∈R, (3.13)
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where η ∈ [0,+∞) is the inverse of the noise level, and the dependence of the
interaction kernel on η is expressed explicitly. We refer to logit(η) to denote the
continuous-time dynamical system (3.13) for a given value of η . The logit dynamics
models users that aim at choosing the optimal strategy, but because of incomplete
information or sub-rationality may take suboptimal strategies. The value of η

describes how suboptimal the choices of the users are. If η = 0 (corresponding to
infinite noise) the users of every population p choose a strategy in their strategy set
with uniform distribution, independently of user cost functions, i.e.,

Θ
p
i (z,0) =

1
|R|

. (3.14)

As η increases, the noise decreases and the users tend to assign a larger probability
to strategies with smaller user cost. Let Rp

min(z) denote the set of optimal routes
i ∈R under flow distribution z, i.e., routes such that cp

i (z)≤ cp
j (z) for every other

route j ∈R. In the limit of infinite η (zero noise), interactions kernels read

lim
η→+∞

Θ
p
i (z,η) =


1

|Rp
min(z)|

, if i ∈Rp
min(z),

0 otherwise,
(3.15)

which means that the users sample uniformly random among the optimal routes.
Logit dynamics belongs to the more general class of perturbed best response dynam-
ics. The advantage of the logit dynamics compared to other perturbed best response
dynamics is that the perturbation level with respect full-rational users is parametrized
by the scalar parameter η (see [17, Chapter 6.2] for more details).

Remark 3.1. Note that the logit dynamics satisfies all the properties defined above:
it is target by construction, and exact since for every population p, flow distribu-
tion z, and η , it holds ∑i∈RΘ

p
i (z,η) = 1; monotonicity follows from noticing that

∂Θ
p
i /∂cp

i ≤ 0, and ∂Θ
p
i /∂cp

j ≥ 0. To show that it is also decoupled, assume that
G = S(G1,G2), and consider the route r composed of the routes i ∈R1 and j ∈R2

in series. From additivity of user cost functions, i.e., cr(z) = ci(z)+ c j(z), it follows

Θ
p
r (z) = τ

p ·
exp(−η(cp

i (z)+ cp
j (z)))

∑n∈R1
m∈R2

exp(−η(cp
n(z)+ cp

m(z)))

= τ
p ·

exp(−η · cp
i (z))

∑n∈R1 exp(−η · cp
l (z))

·
exp(−η · cp

j (z))

∑m∈R2 exp(−η · cp
m(z))

,

(3.16)
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which satisfies (3.11).

Our main contribution deals with the characterization of the asymptotic behaviour
of the logit dynamics in heterogeneous routing games. To better motivate our
problem, in the next section we enunciate a known result on logit dynamics in
homogeneous routing games. Throughout the chapter we shall assume that no agents
use walks from o to d that contain cycles.

3.3 Logit dynamics in homogeneous routing games

In this section we provide a characterization of the asymptotic behaviour of the logit
dynamics in homogeneous routing games. Such a characterization relies on the fact
that homogeneous routing games are potential games. To this aim, we introduce the
entropy H : Z →R+, defined as

H(z) :=− ∑
p∈P

∑
i∈R

zp
i log

(
zp

i
τ p

)
:= ∑

p
Hp(zp). (3.17)

The entropy Hp describes how uniform the strategy distribution of the users of
population p is. If all the users of population p use the same strategy, then Hp = 0;
on the contrary, if the users distribute uniformly on the routes, then Hp is maximized.
The next proposition states that the logit dynamics in homogeneous routing games
admits a globally asymptotically stable fixed point, and that such a fixed point
approaches the set of the Wardrop equilibria of the game as the noise vanishes.

Proposition 3.1. Consider a homogeneous routing game with potential

V (z) = ∑
e∈E

∫ (Lz)e

0
de(s)ds, (3.18)

as defined in (2.15), and consider the corresponding logit(η) defined in (3.13). Let

Vη(z) :=V (z)− 1
η

H(z). (3.19)

Then:

1. Vη(z) is strictly convex.
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2. Let zη denote the unique minimizer of Vη in Z . For every initial condition
z(0) ∈ Z ,

lim
t→+∞

z(t) = zη . (3.20)

3. Let Z∗ denote the set of Wardrop equilibria of the game. Then, zη

η→+∞−−−−→Z∗.

Proof. 1) The strict convexity of Vη follows from noticing that V is convex and −H
is strictly convex.

2) The convergence of z(t) to zη follows from Point 3 of Proposition C.1 and
from the uniqueness of the minimizer zη , which follows from strict convexity of Vη .

3) Consider a sequence ηn such that limn→+∞ and the corresponding sequence
of fixed points zn is convergent. A convergent sequence always exist due to the fact
that zn ∈ Z and Z is compact. Denote by z∗ the limit of zn. It follows that

z∗ = lim
n→+∞

zn ∈ argmin lim
n→+∞

(
V (zn)−

1
ηn

H(zn)

)
. (3.21)

Since H is bounded in Z , and limn→+∞ ηn =+∞,

lim
n→+∞

(
V (zn)−

1
ηn

H(zn)

)
=V (z∗)− lim

n→+∞

1
ηn

H(zn) =V (z∗). (3.22)

Thus, z∗ is a minimizer of V in Z , which implies by Theorem 2.1 that z∗ is a Wardrop
equilibrium.

A few remarks on Proposition 3.1 follow. Note that even if the delay functions are
strictly increasing, the potential V is strictly convex in f, but it is in general convex in
z. Thus, the game may admit connected set of equilibria Z∗. However, the convexity
of −H makes the perturbed potential Vη strictly convex in z, and allows to conclude
that for every value of η the logit dynamics admits a globally asymptotically stable
fixed point. Proposition 3.1 additionally shows that such a fixed point approaches the
set of the Wardrop equilibria of the game as the noise vanishes. Note that Proposition
3.1 does not imply that every Wardrop equilibria z∗ is approached by fixed points
of the logit dynamics as η increases. Our main contribution is to extend the results
of Proposition 3.1 to the case of heterogeneous routing games. In particular, we
prove in Section 3.4 the convergence of the set of fixed points of the logit dynamics
to a subset of the Wardrop equilibria in the limit of vanishing noise, called the set
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of limit equilibria, and provide a characterization of such a set. Furthermore, in
Section 3.5 we generalize Proposition 3.1 by proving that the logit dynamics admits
a globally asymptotically stable fixed point even in heterogeneous routing games,
under a suitable assumption on the network topology.

We remark that a result similar to Proposition 3.1 may be established for het-
erogeneous routing games satisfying condition (2.22), since they admit potential.
However, our main effort is on non-potential heterogeneous games, which constitute
the largest fraction of heterogeneous games. For completeness of presentation we
also remark that despite our main focus is on the logit dynamics, similar results
on global convergence on potential games may be established for a broader set of
evolutionary dynamics, e.g., imitative dynamics, pairwise comparison dynamics, and
excess payoff dynamics (for more details, see [17, Chapter 7.1])

3.4 Fixed points of the logit dynamics

In this section we characterize the fixed points of the logit dynamics in heterogeneous
routing games. Specifically, we show that the set of the fixed points of the logit dy-
namics is non-empty and compact. Additionally, we show that such a set approaches
a subset of the Wardrop equilibria (called limit equilibria) of the game in the limit
of vanishing noise. We furthermore show that every strict Wardrop equilibrium
(i.e., an equilibrium in which every population uses one route only, and every other
route is strictly suboptimal) belongs to the set of the approximated equilibria. We
shall retrieve notions on continuous-time dynamical systems that are contained in
Appendix B. Before, we provide the following definitions on Wardrop equilibria.

Definition 3.1 (Strict equilibrium). An equilibrium z is called strict for population p
if zp = τ pδr for a route r ∈R and cp

r (z)< cp
s (z) for every s ̸= r. The equilibrium is

called strict if it is strict for every population p.

Definition 3.2 (Quasistrict equilibrium). An equilibrium z is called quasistrict for
population p if for every route r,s such that zp

r > zp
s = 0, it holds cp

r (z)< cp
s (z). The

equilibrium is called quasistrict if it is quasistrict for every population p.

Theorem 3.1. Consider a heterogeneous routing game on an arbitrary network
G with non-decreasing delay functions, and let Z∗ ⊆Z denote the set of Wardrop
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equilibria of the game. Let Ωη ⊆Z denote the set of fixed points of the associated
logit(η) defined in (3.13). Then,

1. for every η ≥ 0, Ωη is non-empty and compact.

2. There exists a non-empty compact set Z∗ ⊆Z∗ such that

lim
η→+∞

Ωη = Z∗, (3.23)

where the convergence of compact sets is meant in the sense of Definition B.8.

3. Every strict Wardrop equilibrium belongs to Z∗.

Proof. 1) Consider the function Fη : Z →Z , defined by

(Fη)
p
i (z) = τ

p exp(−η · cp
i (z))

∑ j∈R exp(−η · cp
j (z))

.

Notice that, for every η ∈ [0,+∞), Fη maps the non-empty compact convex set Z
in itself and is continuous. Hence, Brouwer’s fixed point theorem guarantees that
Fη admits at least one fixed point in Z [80]. This implies that the set of fixed points
Ωη is non-empty for every η ∈ [0,+∞). Notice also that Ωη is compact for every η ,
since it is a level set of a continuous function.

2) Consider a sequence ηn ⊆ [0,+∞) such that limn→+∞ ηn = +∞. For every
n, let zn ∈ Ωηn be an arbitrary fixed point of logit(ηn). Let (znk)k be a converging
subsequence and let z∗ = limk→+∞ znk ∈ Z be its limit. Consider a suboptimal route
r for population p under z∗, i.e., a route r such that there exists a route s with
cp

s (z∗)< cp
r (z∗). Since route r is dominated by route s, for such a route it holds

lim
k→+∞

exp(−ηnk · c
p
r (znk))

∑ j∈R exp(−ηnk · c
p
j (znk))

= 0. (3.24)

From (3.13) and (3.24) it follows

(z∗)p
r = lim

k→+∞
(znk)

p
r = τ

p · lim
k→+∞

exp(−ηnk · c
p
r (znk))

∑ j∈R exp(−ηnk · c
p
j (znk))

= 0. (3.25)
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Since this argument may applied to every suboptimal route, only optimal routes may
carry a positive flow, which is the definition of Wardrop equilibrium according to
Definition 2.17. Thus z∗ belongs to Z∗.

3) Consider a strict equilibrium z∗, and denote by r∗(p) the optimal route for
population p, i.e., (z∗)p = τ pδr∗(p) for every p. For any ε ≥ 0, let

Oε = {z ∈ Z : zp
r∗(p) ≥ τ

p(1− ε) ∀p ∈ P}, (3.26)

be the set of route flows such that at least a fraction 1− ε of every population p uses
its optimal route r∗(p) under z∗. Note that z∗ ∈ Oε for every ε ≥ 0. Let

α := min
p∈P

min
s∈R,

s ̸=r∗(p)

[cp
s (z

∗)− cp
r∗(p)(z

∗)]> 0. (3.27)

Note that α > 0 is a consequence of z∗ strict. We now define ε to be the largest ε

such that for every z ∈ Oε , for every population p and route s ̸= r∗(p), the difference
between the user cost of route s and the user cost of route r∗(p) is at least α/2, i.e.,

ε = max
{

ε ≥ 0 : min
z∈Oε

min
p∈P

min
s∈R,

s ̸=r∗(p)

[cp
s (z)− cp

r∗(p)(z)]≥
α

2

}
. (3.28)

Note that ε > 0, since the equilibrium is strict and user cost functions are continuous.
We now show the existence of η such that for every η ∈ [η ,+∞) and ε ∈ [0,ε], Fη

maps Oε in itself. Indeed, for every ε ∈ [0,ε] and population p, the route r∗(p) is
still strictly optimal for every flow in Oε . Thus, for an arbitrary z ∈ Oε , route i and
population p,

lim
η→+∞

(Fη)
p
i (z) =

τ p if i = r∗(p),

0 otherwise
(3.29)

Note that the right term in (3.29) correspond to z∗ which is in the interior of Oε for
every ε > 0. Thus, by continuity of Fη in η , there exists a large enough value of
η such that for η ∈ [η ,+∞), Fη maps Oε in itself for every ε ∈ (0,ε]. Since Oε is
compact and convex, Brower’s fixed point theorem ensures the existence of at least
a fixed point of Fη in Oε for a large enough η . Since the argument holds for every
small enough ε , and since Oε approximates z∗ as ε → 0, then there exists a sequence
of fixed points zn such that limn→+∞ zn = z∗, which concludes the proof.
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We call Z∗ the set of the limit equilibria of the game. Theorem 3.1 states that
Z∗ includes all the strict equilibria of the game, but a complete characterization of
Z∗ is still missing. In the next section we generalize Proposition 3.1 to the case of
heterogeneous routing game, showing that, under a restrictive assumption on the
topology of the network the logit dynamics admits a globally asymptotically stable
fixed point.

3.5 Global stability on series of parallel networks

In this section we show that given a heterogeneous game on a (series of) parallel
network(s), the corresponding logit dynamics admits a globally asymptotically stable
fixed point for every η , and that the set of the fixed points approach the set of the
limit equilibria as η grows. The statement builds on contractive systems theory. The
steps to the main result are the following:

• we first prove that monotone decoupled exact target evolutionary dynamics
whose interactions kernel depends on the flows via the aggregate flows admit
a globally asymptotically stable fixed point on (series of) parallel networks;

• since the logit dynamics satisfies all the required properties, we apply the
previous statement to the logit dynamics;

• by Theorem 3.1, we conclude that the unique fixed point of the logit dynamics
converges to the set of the limit equilibria of the game in the limit of vanishing
noise.

The first statement builds on two lemmas and on a technical proposition on con-
tractive systems, whose proof is deferred to Appendix B. Proposition 3.2 is not
original and may be found in [81]. Still, we provide an alternative and more intuitive
proof. Our proof borrows techniques from [82, Lemma 5], where the authors prove
that every monotone diagonally dominant system is l1-contractive. Proposition 3.2
generalizes this result, proving that l1-contractivity holds for every continuous-time
dynamical system whose Jacobian has strictly negative matrix measure, which in-
cludes the monotone case. We refer to Appendix B for notions on continuous-time
dynamical systems.
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Proposition 3.2. Let (Rn,g) be a continuous-time dynamical system, and assume
that g : Rn → Rn is continuously differentiable and infinitesimally contractive in
X ⊆ Rn with respect to || · ||1, with contraction rate c > 0. Assume that X is g-
invariant, and let x(t) and y(t) denote the trajectories at time t corresponding to
initial conditions x(0) = x0 ∈ X and y(0) = y0 ∈ X , respectively. Then,

1. for every t ≥ 0
||x(t)−y(t)||1 ≤ e−ct ||x0 −y0||1, (3.30)

2. There exists a unique fixed point z∗ in X , and z∗ is globally exponentially
stable with region of attraction containing X ;

Proof. See Appendix B.

The next lemma states that decoupled exact target dynamics on series of networks
are equivalent to the dynamics that would be observed on the two subnetworks if
multiple games, one on each subnetwork separately, were considered. We consider
exact target dynamics

żp
i = τ

p
Θ

p
i (z)− zp

i , (3.31)

on a network G = S(G1,G2). Since the route set of G is R1 ×R2, we denote every
route in G by two indexes, corresponding to route in G1 and G2 respectively. We let

zi∗ := ∑
j∈R2

zi j, z∗ j := ∑
i∈R1

zi j

denote the route flows distribution that z induce on G1 and G2, respectively.

Lemma 3.2 (Decoupling on series of networks). Let G = S(G1,G2), and consider an
exact target decoupled dynamics on G. Then, the route flows on G1 and G2 induced
by the dynamics are equivalent to route flows on G1 and G2 induced by separate
dynamics on G1 and G2 respectively.

Proof. By the assumption that the dynamics is decoupled,

żp
i j = τ

p
Θ

p
i (zG1)Θ

p
j (zG2)− zp

i j. (3.32)
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Summing (3.32) over j and recalling that the dynamics is exact we get the following
dynamics for zi∗,

żp
i∗ = τ

p
Θ

p
i (zG1)− zp

i∗, (3.33)

which does not depend on the flows over G2 and is equivalent to the dynamics that
would be observed considering the routing game on G1 instead of G. The same
argument may be applied to G2, concluding the proof.

The next lemma states that the convergence of aggregate route flows to a globally
asymptotically stable fixed point is a sufficient conditions for the convergence of
population flows.

Lemma 3.3. Consider a heterogeneous routing game, and assume that the aggregate
flows zagg = ∑p∈P zp converge to a unique globally asymptotically fixed point under
the logit dynamics (3.13). Then, for every population p the route flows zp converge
to a globally asymptotically stable fixed point.

Proof. We show that convergence of aggregate flows to a globally asymptotically
stable fixed point implies the convergence of population flows to a globally asymp-
totically stable fixed point. Assume that aggregate flows converge asymptotically,
and let z̃agg = limt→+∞ zagg(t) denote the fixed point of aggregate flow distribution.
Consider the kernels Θ(z) of the logit dynamics defined in (3.12), where the depen-
dence on η is omitted, and note that, since the user cost functions depend on z via
the aggregate flow zagg, also the kernels depend on z via the aggregate flow zagg. By
convergence of the aggregate flows and by continuity of Θ

p
r (zagg) for every route

and population, we get that for every ε > 0, there exists T > 0 such that for every
route r and population p,

|Θp
r (z

agg(t))−Θ
p
r (z̃

agg)|< ε ∀t > T,

Θ
p
r (z̃

agg)− ε < Θ
p
r (z

agg(t))< Θ
p
r (z̃

agg)+ ε ∀t > T.
(3.34)

Recall that żp
r = Θ

p
r (zagg)− zp

r . Thus, we can use (3.34) to bound zp
r (t) for every

time t ≥ T . Consider an arbitrary initial condition zp
r (T ). We now prove that for

every time t ≥ T ,

zp
r (t)≥ (zp

r (T )−Θ
p
r (z̃

agg)+ ε)e−(t−T )+Θ
p
r (z̃

agg)− ε. (3.35)
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where the right term of (3.35) is solution of

żp
r = Θ

p
r (z̃

agg)− ε − zp
r . (3.36)

with initial condition zp
r (T ). Indeed, let us assume that (3.35) does not hold, i.e., it

exists a time t2 > T such that

zp
r (t2)< (zp

r (T )−Θ
p
r (z̃

agg)+ ε)e−(t2−T )+Θ
p
e (z̃

agg)− ε. (3.37)

Then, it must exist a time t1 ∈ [T, t2) such that

zp
r (t1) = (zp

r (T )−Θ
p
r (z̃

agg)+ ε)e−(t1−T )+Θ
p
r (z̃

agg)− ε, (3.38)

żp
r (t1)< Θ

p
r (z̃

agg)− ε − zp
r (t1). (3.39)

This would imply Θ
p
r (zagg(t1))−zp

r (t1)<Θ
p
r (z̃agg)−ε−zp

r (t1), contradicting (3.34).
Thus, from (3.35), in the limit of infinite t,

lim
t→+∞

zp
r (t)≥ Θ

p
r (z̃

agg)− ε. (3.40)

By applying the same arguments to the opposite inequality in (3.34), we obtain

lim
t→+∞

zp
r (t)≤ Θ

p
r (z̃

agg)+ ε. (3.41)

Since ε can be chosen arbitrarily small,

lim
t→+∞

zp
r (t) = Θ

p
r (z̃

agg) ∀r ∈R, ∀p ∈ P. (3.42)

Hence, zp
r (t) converges to a unique fixed point for each initial condition, which

concludes the proof.

We can now state our result on the existence of a globally asymptotically stable
fixed point of monotone decoupled exact target dynamics for heterogeneous routing
games on (series of) parallel networks.

Proposition 3.3. Consider a heterogeneous game (G, P , d,τττ), and consider an exact
target monotone dynamics for this game. Assume additionally that the interaction
kernels of the dynamics depend on z via the aggregate flows zagg, i.e., Θ

p
r (z) ≡

Θ
p
r (zagg) for every route and population. Then:
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1. If G is a parallel network, then the dynamics admits a globally asymptoti-
cally stable fixed point, and in particular the aggregate flows zagg converge
exponentially fast.

2. If G is a series of parallel networks and the dynamics is also decoupled, then
the dynamics admits a globally asymptotically stable fixed point.

Remark 3.2. Notice that series of parallel networks differ from series-parallel
networks. While the former networks are obtained by composing in series an
arbitrary number of parallel networks, the latter ones may be obtained by applying
an arbitrary number of series or parallel compositions in any order, and are therefore
a superset of the former ones.

Proof. Summing (3.31) over the populations p, we obtain the dynamics of aggregate
route flows, i.e.,

żagg
i = ∑

p∈P
τ

p
Θ

p
i (z

agg)− zagg
i . (3.43)

Since the interaction kernels depend on the aggregate flows, the evolution of the
aggregate flows is autonomous. Also, the Jacobian of the system is Metzler (see
Definition B.11) because of monotonicity assumption. Furthermore,

∑
i∈R

żagg
i = ∑

p∈P
τ

p
∑
i∈R

Θ
p
i (z

agg)−∑
i

zagg
i = ∑

p
τ

p − ∑
i∈R

zagg
i , (3.44)

where the last equality follows from the fact that the dynamics is exact target.
Moreover,

∑
i∈R

∂ żagg
i

∂ zagg
j

=
∂
(
∑i∈R żagg

i
)

∂ zagg
j

=−1. (3.45)

Hence, the Jacobian is diagonally dominant by columns. It thus follows that
µ1(J(zagg)) = −1 for every zagg, and exponential convergence of aggregate flows
to a globally exponentially stable fixed point follows from Proposition 3.2. The
convergence of population route flows follows from Lemma 3.3, and the statement
on series of parallel networks follows from Lemma 3.2.

Proposition 3.3 states that monotone decoupled exact target dynamics that depend
on aggregate flows admit a globally asymptotically stable fixed point on series of
parallel networks. Since the logit dynamics satisfies all the required properties, the
result applies to the logit dynamics. Moreover, the unique fixed point of the logit
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dynamics approaches the set of the Wardrop equilibria as the noise vanishes, as
proved in the next theorem.

Theorem 3.2 ([70]). Consider a heterogeneous game (G, P , d,τττ), and consider the
corresponding logit dynamics defined in (3.13). Then:

1. If G is a parallel network, the dynamics (3.31) admits a globally asymptoti-
cally stable fixed point, and in particular the aggregate flows zagg converge
exponentially fast.

2. If G is a series of parallel networks, then the logit dynamics admits a globally
asymptotically stable fixed point zη .

3. In the limit of the vanishing noise, the unique fixed point of the dynamics
approaches the set of the limit equilibria, i.e., zη

η→+∞−−−−→Z∗.

Proof. Points 1 and 2 follow from Proposition 3.3, by noticing that the logit dynamics
is monotone, exact target, decoupled, and its interaction kernels depend on the
aggregate flows. Point 3 follows from Theorem 3.1.

The next example illustrates numerical simulations of the logit dynamics on a
parallel network, confirming our theoretical results.

Example 3.1. Consider a parallel network with two nodes o and d linked by two
parallel links. Let 

d1
1(x) = x,

d1
2(x) = x+1,

d2
1(x) = x,

d2
2 = 2x,

τ1 = 2,

τ2 = 1.

Such an assignment satisfies the hypotheses under which a continuum of equilibria
exists (see Example 2.8). The unique equilibrium in terms of aggregate flows is
( f ∗)agg

1 = 2,( f ∗)agg
2 = 1. Thus the continuum of equilibria is

f 1
1 = f 1

1 ,

f 1
2 = 2− f 1

1 ,

f 2
1 = 2− f 1

1 ,

f 2
2 = f 1

1 −1,
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Fig. 3.1 Numerical simulations of the logit dynamics of the game in Example 2.8, with
η = 100. Above: two initial conditions converging to same fixed point. Bottom-left: l1
distance between the two trajectories, compared with an exponential behaviour. Bottom-
right: the unique fixed point of the dynamic expressed in terms of the aggregate flows, as a
function of the noise level.

with f 1
1 ∈ [1,2]. The top plots in Figure 3.1 show two simulations with η = 100 and

different initial conditions. For both the initial conditions the dynamics converge to
the same point, coherently with Theorem 3.2. Moreover, the bottom left plot shows
given the two trajectories, projected in the space of the aggregate flows, converge
each other faster than exponentially, confirming the theoretical results. The bottom-
right plot instead shows that as η increases (thus, the noise decreases) the fixed point,
projected in the aggregate flow space, approaches the set of the Wardrop equilibria
of the game.

The stability results established so far require the network to be parallel or a
series of parallel networks. In particular, in Theorem 3.2 we show that the logit
dynamics admits a globally attractive fixed point if the network is a series of parallel
networks, and this fixed point approaches the set of the Wardrop equilibria of the
game as the noise vanishes. Motivated by numerical examples, in the next section
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Fig. 3.2 Numerical simulations of the logit dynamics corresponding to the heterogeneous
routing game in Example 2.8. We illustrate two trajectories corresponding to different initial
conditions for many values of η . The trajectories are projected in the space of the aggregate
route flows.

we investigate the behaviour of the dynamics when the network is arbitrary, in both
the limits of large and vanishing noise.

3.6 Logit dynamics on arbitrary networks

This section is devoted to analyse the behaviour of the logit dynamics on arbitrary
networks. Our main results are the following:

1. in the limit of large noise, the logit dynamics admits a globally exponentially
stable fixed point;

2. in the limit of vanishing noise, every strict equilibrium is locally asymptotically
stable.
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The first result follows from contractive systems theory, in particular from Proposition
3.2. The local stability of strict equilibria relies on linearisation techniques. Before
establishing the theoretical results, we provide a motivating example.

Example 3.2. We provide numerical simulations of the logit dynamics corresponding
to the heterogeneous game presented in Example 2.8. The game possesses three
essentially different Wardrop equilibria, two of them strict. In Figure 3.2 two trajec-
tories corresponding to different initial conditions are illustrated. The simulations
are performed with four different values of η , and the trajectories are projected
in the space of the aggregate network flows. When η = 0 (infinite noise), both
the trajectories converge to a fixed point in which all the populations randomize
between the routes. As η increases, the asymptotic state of the system varies, but the
trajectories still converge to a unique fixed point. For a larger η , the system exhibits
a bifurcation. Specifically, the two trajectories converge to two different fixed points,
that approach the two strict equilibria of the game as η increases. We observe from
Figure 3.3 that the system exhibits a pitchfork bifurcation. If η is smaller than a
critical threshold η∗ ≃ 3.22, then the system admits a globally asymptotically stable
fixed point. As η grows, such a fixed point becomes unstable, and two fixed points
approaching the strict equilibria arise. The unstable fixed point corresponds to the
third Wardrop equilibrium. We thus argue that also the third Wardrop equilibrium is
a limit equilibrium, but in contrast with the strict equilibria, numerical simulations
reveal its instability. To further verify the instability of the middle equilibrium, we
report in Figure 3.4 the eigenvalue with the largest real part of the Jacobian of the
system, computed in the unstable fixed point as a function of η . As expected, the
eigenvalue becomes positive about η∗.

Motivated by the numerical example, we investigate the behaviour of the logit
dynamics on arbitrary network, and provide two theoretical results. The next theorem
characterizes the behaviour of the logit dynamics in the limit of large noise.

Theorem 3.3. Consider a heterogeneous routing game on an arbitrary network, and
consider the corresponding logit(η) defined in (3.13). Then, for every k ∈ (0,1],
there exist ηk such that for η ∈ [0,ηk] logit(η) admits a globally exponentially stable
fixed point with rate k.
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Fig. 3.3 Bifurcation diagram of logit(η) corresponding to the game in Example 2.8. For
simplicity we plot only two of the six aggregate network flow components, but similar
diagrams may be shown for other components.

Fig. 3.4 The eigenvalue with largest real part of the Jacobian of the logit dynamics, computed
in the fixed point that switches from stable to unstable as η grows. In accordance with the
bifurcation diagram in Figure 3.3, the fixed point become unstable around η∗ = 3.22.
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Proof. For every z, it holds:

∂ żp
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∂ zq
j

= ητ
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exp(−ηcp
i (z))∑s exp(−ηcp

s (z))
(

∂cp
s (z)

∂ zq
j
− ∂cp

i (z)
∂ zq

j

)
(∑s exp(−ηcp

s (z)))2 −δi jδpq,

(3.46)
thus the Jacobian reads

J(z,η) = ηM(z,η)− I, (3.47)

where M : Z×R+ →RRP×RP. For every network, M(z,η) satisfies two properties:

1. the diagonal is nonpositive, because for every populations p,q and routes j, i,

∂cp
i (z)

∂ zq
j

≤
∂cp

i (z)
∂ zp

i
;

2. M(z,0) = 0RP×RP, for every z ∈RR
+.

Thus, for every network and assignment of delay functions, it holds J(z,0) = −I,
which implies

µ1(J(z,0)) =−1 ∀ z ∈ Z, (3.48)

where the definition of the matrix measure µ1 is given in Definition B.9. Since
M(z,η) is continuously differentiable in η , it follows that for every k ∈ (0,1], there
exist ηk ≥ 0 such that for every z and η ∈ [0,ηk],

µ1(J(z,η))≤−k. (3.49)

The existence of a globally exponentially stable fixed point with rate k thus follows
from Proposition 3.2.

Theorem 3.3 characterizes the behaviour of the logit dynamics in the large noise
regime. Note that such a result holds on every arbitrary network. In the next theorem,
we study the the logit dynamics on arbitrary networks in the vanishing noise regime.
In particular, Theorem 3.4 states that strict equilibria are locally asymptotically
stable without any assumption on the network topology, where stability of Wardrop
equilibria has to be meant as stability of fixed points converging to it.
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Theorem 3.4. Consider a heterogeneous routing game on an arbitrary network,
and consider the corresponding logit dynamics defined in (3.13). Then, for every
strict equilibrium z∗, fixed points of logit(η) such that limη→+∞ zη = z∗. are locally
asymptotically stable under logit(η) in the limit η →+∞.

Proof. Consider a strict equilibrium z∗. It follows from Theorem 3.1 that z∗ admits
a sequence of fixed points zn ∈ Ωηn such that limn→+∞ zn = z∗. We aim at studying
the linear stability of zn. We recall from (3.46) that for every z, the Jacobian is in the
form

J(z,η) = ηM(z,η)− I. (3.50)

The linear stability of a fixed point zn in the vanishing noise regime thus depends on
the eigenvalues of the matrix limn→+∞ ηnM(zn,ηn), whose real part has to be less
than 1 to ensure stability. Ordering the components by {z1

1, · · · ,z1
R, · · · ,z1

P, · · · ,zR
P},

since ∂ żp
i (z,η)/∂ zq

j does not depend on q (because user cost functions depend on
aggregate flows), M is in the form

M =

 M1 · · · M1
... . . . ...

MP · · · MP

 . (3.51)

Consider a population p that uses only route i, i.e., cp
i (z

∗)< cp
r (z∗) for every route

r ̸= i. Thus, for every route r ̸= i,

lim
n→+∞

ηn
exp(−ηncp

i (zn))exp(−ηncp
r (zn))

(∑s exp(−ηncp
s (zn)))2 = 0, (3.52)

since, as ηn → +∞, the numerator is dominated by the term exp(−2ηci) of the
denominator. This implies that limn→+∞ ηn(Mp)ir(zn,ηn) = 0 for every r ̸= i. By
similar arguments, limn→+∞ ηn(Mp) jr(zn,ηn) = 0 for every suboptimal route j ̸= i
and for every r. We now show that limn→+∞ ηn(Mp)ii(zn,ηn) = 0 for every i. To this
end, note that, under logit(η), for every route i and population p it holds

zp
i + żp

i
τ p =

exp(−ηcp
i (z))

∑s∈R exp(−ηcp
s (s))

. (3.53)
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Thus, since fixed points by definition satisfy żp
i = 0, then
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Observe from (3.13) that (zη)
p converges to τ pδi exponentially fast in η , since the

equilibrium is strict. Hence, we conclude that limn→+∞ ηnMp
ii (zn,ηn) = 0. Since

we have proved that every element of limn→+∞ ηnMp(zn,ηn) converges to zero, the
linear stability follows from form of the Jacobian in (3.46). The local asymptotic
stability thus follows from Proposition B.1.

This result must be compared with the existing literature. It is known that the
notion of evolutionary stable state allows to establish results on the local asymptotic
stability of fixed points converging to it in the limit of vanishing noise. Specifically,
in [17, Theorem 8.4.6] it is proved that, given an arbitrary interior evolutionary
stable state z of a population game, for every neighborhood of z and large enough
η , there exists one and only one fixed point of logit(η). Furthermore, this fixed
point is locally asymptotically stable in the limit of vanishing noise. Although strict
equilibria are evolutionary stable states, they are not interior, thus violating one of
the hypotheses needed for [17, Theorem 8.4.6] and making our result original.

In the next section we discuss conjectures and generalizations of our theoretical
results.

3.7 Conjectures and generalizations

3.7.1 Logit dynamics on nearly parallel networks

Theorem 3.2 states that on series of parallel networks the logit dynamics admits a
globally asymptotically stable fixed point. However, there is a gap between networks
that admit an essentially unique equilibrium (series of nearly parallel (SNP), as
established in Section 2.5) and networks that admit a globally asymptotically stable
fixed point under the logit dynamics (series of parallel, see Theorem 3.2). Motivated
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Fig. 3.5 If the logit dynamics on every network of this class of networks admits a globally
exponentially stable fixed point, then the logit dynamics admits a globally asymptotically
stable fixed point on every series of nearly parallel networks.

by numerical examples, we conjecture that the existence of a globally asymptotically
stable fixed point of the logit dynamics continues to hold for SNP class, which is
a superset of series of parallel networks. Note that if one is capable to prove that
the logit dynamics admits a globally asymptotically stable fixed point on nearly
parallel networks, the result can be extended to SNP due to Lemma 3.2. Moreover,
Theorem 3.1 allows to conclude that the unique fixed point approaches the set of the
Wardrop equilibria in the limit of vanishing noise. Proving this conjecture is still
an open problem. We are currently able to prove that if the logit dynamics admits
a globally asymptotically stable fixed point on directed instances of the network in
Figure 3.5, then the results holds on every nearly parallel network. Unfortunately, the
monotonicity arguments used in Theorem 3.2 do not apply to a such a case, because
the routes are not parallel, and the conjecture remains thus open. In the next example
we provide simulations of the logit dynamics on the Wheatstone network.

Example 3.3. Consider the heterogeneous game on the Wheatstone network in
Figure 3.6. Since the Wheatstone network is nearly parallel, the equilibrium of this
game is essentially unique. However, for this assignment of throughput and delay
functions the game admits a continuum of equilibria in terms of population flows. In
particular, one can verify that equilibrium route flows are in the parametric form

z1
1 = z1

1, z1
2 = 0, z1

3 = 1− z1
1, z2

1 = 1− z1
1, z2

2 = 2, z2
3 = z1

1, (3.55)
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o

a b

d

e1

e3

e2

e4 e5

p dp
1 (x) dp

2 (x) dp
3 (x) d4(x) dp

5 (x) τ p

1 x 20 2x 5x x 1
2 x 2x 2x 5x x 3

Fig. 3.6 A heterogeneous game on the Wheatstone network possessing a continuum of
equilibria.

with z1
1 ∈ [0,1]. Let r1 = (e1,e4), r2 = (e2,e5), r3 = (e1,e3,e5). To verify that (3.55)

is a Wardrop equilibrium notice that under flows (3.55) the route user costs are

c1
1 = c1

3 = 7 < 20 = c1
2, c2

1 = c2
2 = c2

3 = 7. (3.56)

Notice also that for this particular network there is a one-to-one correspondence
between network flows and route flows. The equilibrium flows (3.55) induce a unique
aggregate route flow (and thus a unique aggregate network flow)

zagg
1 = 1, zagg

2 = 2, zagg
3 = 1, (3.57)

in accordance with Proposition 2.5. In Figure 3.7 it is shown that, although the
game possesses a continuum of Wardrop equilibria, the logit dynamics converges
to a unique asymptotically stable fixed point for two different initial conditions. We
used for the simulations η = 20. Such a value proves to be large enough to verify
that the fixed point of the dynamics approaches the set of the Wardrop equilibria, in
accordance with Theorem 3.1.

3.7.2 Limit equilibria of heterogeneous routing games

Theorem 3.1 states that the set of the fixed points of the logit dynamics in heteroge-
neous routing games approaches the set of the equilibria of the game as the noise
vanishes. However, not every Wardrop equilibrium of the game is the limit of fixed
points of the dynamics, i.e., Z∗ ̸= Z∗. We show in Theorem 3.1 that every strict
equilibrium is a limit equilibrium (and also show in Theorem 3.4 that fixed points
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Fig. 3.7 Numerical simulations of the logit dynamics with η = 20 corresponding to the
game in Figure 3.6. The two plots show two trajectories with different initial conditions,
converging to the same fixed point.

converging to strict equilibria are locally asymptotically stable), but a complete
characterization of the set of the limit equilibria Z∗ is not provided. Our conjecture
is that every connected component of Wardrop equilibria admits one and only one
limit equilibrium. The conjecture is motivated by numerical examples. Indeed, in
Example 3.2 the game admits three isolated equilibria, all of them being limit equi-
libria (although one of them unstable for small noise 1/η). The games in Examples
3.1 and 3.3 admit connected sets of Wardrop equilibria, but the logit dynamics seems
to select one of the infinite equilibria when the noise tends to vanish.

3.7.3 Local stability of quasistrict equilibria

Theorem 3.1 states that every strict equilibrium is a limit equilibrium, and Theorem
3.4 proves that fixed points approaching it are locally asymptotically stable. We
conjecture that the local stability results can be extended to the case of quasi-strict
equilibria that are strict for P− 1 populations, and quasi-strict for the remaining
population, with the remaining population using only two routes. This conjecture
would be proved if we were able to prove that equilibria in this form are limit
equilibria of the game. From there on, the stability of fixed points can be proved
by using similar techniques as in Theorem 3.4. Also, note that, if one additionally
assumes that the delay functions of the game are strictly increasing, then quasi-
strict equilibria in this form are isolated. Hence, the prove of this conjecture would
automatically follow from the conjecture presented in the previous section.
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3.8 Conclusion

In this chapter we investigate the asymptotic behaviour of evolutionary dynamics in
routing games, focusing specifically on the logit dynamics. While the behaviour of
the logit dynamics in homogeneous routing games is well-known in the literature, a
theory for heterogeneous routing games is still missing in the literature. Specifically,
it is known that the logit dynamics in homogeneous routing games admits a globally
asymptotically stable fixed point that approaches the set of the Wardrop equilibria
of the game in the limit of vanishing noise. We extend this result to heterogeneous
routing games under the assumption that the network is parallel or it is the series
composition of parallel networks, and additionally prove that the existence of an
asymptotically stable fixed point holds even for a more general class of dynamics.
We then analyse the logit dynamics in heterogeneous routing games on arbitrary
networks. We show that in the limit of vanishing noise the fixed points of the
dynamics converge to Wardrop equilibria of the game, and additionally show that
strict equilibria are locally asymptotically stable. Additionally, we show that in the
limit of large noise the logit dynamics admits a globally exponentially stable fixed
point on arbitrary networks.

For the future, we aim at proving the conjectures presented in Section 3.7.
Specifically, we aim at extending to series of nearly parallel networks the global
stability results established for series of parallel networks. Furthermore, we aim at
characterizing the set of the limit equilibria that are approximated by fixed points
of the logit dynamics, and find sufficient and necessary conditions under which a
limit equilibrium is locally asymptotically stable. Other research lines include the
generalizations of the stability results to different evolutionary dynamics and to more
complicated routing games, e.g., to consider multiple origin-destination pairs.



Chapter 4

Network design of transportation
networks

4.1 Introduction

Due to increasing populations living in urban areas, many cities are facing the
problem of traffic congestion, which leads to increasing levels of pollution and
massive waste of time and money [2]. The problem of mitigating congestion has been
tackled in the literature from two main perspectives. One approach is to indirectly
influence the behaviour of the drivers by incentive-design mechanisms, with the goal
of minimizing the inefficiencies due to the autonomous uncoordinated decisions of
users. A second approach is to intervene on the transportation network directly, by
building new roads or enlarging existing ones. The corresponding network design
problem (i.e., the problem of optimizing the intervention on a transportation network
subject to some budget constraints, see e.g. [10]) is very challenging because of its
bi-level nature [11], i.e., it involves a network intervention optimization problem
given the flow distribution for that particular network. For simplicity, we work in
the setting of homogeneous routing games, i.e., we assume that each link of the
network is endowed with a delay function that is common to all the users, and the
flow distributes according to a Wardrop equilibrium, taking routes with minimum
delay. A characterization of Wardrop equilibrium is used to construct the lower level
of the bilevel network design problem. We assume that the goal of the planner is
to minimize the total travel time at the equilibrium, i.e., the social cost of the game
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according to Definition 2.16. Since the considered routing game is homogeneous,
the theoretical results contained in the previous chapter guarantee that stability of
equilibrium flows under evolutionary dynamics. An additional reason to adopt the
homogeneous setting is that the notion of social cost in heterogeneous games is
not even well defined, since the delay functions on the links are not unique and
vary among the populations. Indeed, if the different user cost functions are due to
different information on the state of the streets, then the social cost should be defined
in terms of real delay functions that do not depend on the population; if instead delay
functions correspond to a actual different user cost over the link set (for instance
due to different trade-offs between travel time and fuel consumption) it seems more
suitable to measure the social cost as the sum of the user cost incurred by every user.

In this work we study a special class of network design problem (NDP), where
the planner can improve the delay function of a single link. For this class of
NDPs, our first main result provides an analytical characterization of the social
cost variation corresponding to an intervention on a particular link under a regularity
assumption, which states that the links that carry positive flow remain unchanged with
an intervention. This assumption, which is not new in the traffic equilibrium literature
(see e.g. [83, 84]) leads to a characterization of Wardrop equilibria using a system of
linear equations and enables representing link interventions as rank-1 perturbations of
the system. We show that this assumption is satisfied provided that the total incoming
flow to the network is large enough and the network is series-parallel, which may
be of independent interest. We exploit the structure of our characterization and
linearity of delay functions to express the social cost variation using the effective
resistance of a link (i.e., between the end-points of the link), defined with respect to a
related resistor network. Computing the effective resistance of a single link requires
the solution of a linear system with a matrix whose size scales with the size of the
network (we indistinctly refer to the size of the network as the cardinality of the
node and the link sets, implicitly assuming that transportation networks are sparse
in a such a way that the average degree of the nodes is independent of the number
of nodes, inducing then a proportionality between the number of nodes and links).
Hence, solving the NDP requires the solution of E of these problems, with E denoting
the number of links. Since this can be computationally intractable for large networks,
our second main result proposes a method based on Rayleigh’s monotonicity laws
to approximate the effective resistance of each link with a number of iterations
independent of the network size, thus leading to a significant reduction of complexity.
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The key idea is that the effective resistance between two adjacent nodes i and j
depends mainly on the local structure of the network around the two nodes (i.e., the
set of nodes Nd({i, j}) that are at distance no greater than a small given constant d
from at least one of i and j), and may therefore be approximated by performing only
local computations. Since for networks with bounded degrees (as typical in traffic
networks, think for instance of the bidimensional square grid) the size of Nd({i, j})
does not scale with the network size, we can guarantee that the approximation error
and computational complexity of our method also do not scale. Then, we provide
sufficient conditions on the network under which the approximation error vanishes
asymptotically in the limit of infinite networks, and show simulations on synthetic
and real networks. Afterwards, we use similar arguments to evaluate the effect of
adding a link instead of modifying a pre-existing one. However, since the end-nodes
of the new link might in principle be separated by a large distance in the original
network, the approximation methods do not apply to the case.

In our work we consider a special case of a NDP. These problems have been
formalized in the last decades via many different formulations, as discussed in
Chapter 1. We stress that most of the literature focuses on finding time polynomial
algorithms to approximately solve NDPs in their most general form. As noted above,
we instead consider a problem that can be solved with a polynomial algorithm by
simply enumerating all the candidate links and computing the social cost corre-
sponding to the intervention on each of those links. Our main contribution is to
define a simplified, more intuitive and tractable approach to solve such a design
problem in quasilinear time instead of polynomial, as well as providing intuition and
a complete new formulation. For the future we aim at extending our techniques to
more general cases, like the multiple interventions case. Unfortunately, as shown in
the conclusive section, our objective function is not submodular and thus we do not
have any guarantees on the performance of greedy algorithms. Since we assume that
delay functions are affine, our NDP formulation is strictly related to marginal toll
literature. Indeed, assuming that the intervention improves the slope of a link e from
ae to ãe, leading to d̃e( fe) = de( fe)− (ae − ãe) fe, our intervention is equivalent to
adding a scaled negative marginal toll on a street, where marginal tolls are defined
in the functional form fe(d′

e( fe)) ∝ fe. In the literature, the problem of optimal
tolling has been widely explored, also dealing with the problem of the support of the
Wardrop equilibrium varying with the intervention, i.e., without imposing restrictive
assumptions. However, as NDPs literature, most of the literature on optimal tolling
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aims at finding conditions under which a general NP-hard problem may be solved
in polynomial time. Moreover, to relax our assumption it is often assumed that
the network has parallel links, which is unrealistic for transportation networks (see,
e.g., [85, 86], where the authors find conditions under which an optimal tolling
satisfying certain constraints may be found in polynomial time in networks with
parallel links). Another mathematically equivalent setting to ours is to consider
users that minimize a combination of the delay function and marginal social cost
the associated to their choice, which is in the form ( fede( fe))

′, and thus linear in fe

as our intervention. Models like this have been considered for instance in [87], but
with different purposes not related to ours. Our work is related to [83, 84], where the
authors investigate the sign of total travel time variation when a new path is added
to a two-terminal network, under similar assumptions to ours, providing sufficient
conditions under which Braess paradox arises. In our work we instead suggest an
efficient algorithm to select the best link to improve. As mentioned, the key steps
of our approach is to reformulate the NDP in terms of a resistance problem, and
also exploit the parallelism between random walks and resistance networks. From a
methodological perspective it is worthwhile mentioning that the relation between
Wardrop equilibria and electric flows has been first investigated in [88], while the
parallelism between random walks and Wardrop equilibria has been explored in
[89], although with different purposes. The equivalence between random walks and
electrical flows is quite standard and illustrated in Appendix A.1.

To summarize, the contribution of this chapter is two-fold. From a method-
ological perspective, we provide a method to locally upper and lower bound the
effective resistance between adjacent nodes, which may be of a separate interest
beyond traffic applications. From the network design perspective, we provide a new
formulation of the design problem in terms of resistor networks, and we exploit our
methodological result to approximate in an efficient manner a simplified version of
the design problem where a single link can be improved. The chapter is based on
[71].

The remainder of the chapter is organized as follows. In Section 4.2 we define
the model and formulate the problem as a bi-level programming. In Section 4.3 we
rephrase it in terms of resistor networks, and discuss our main assumption. In Section
4.4 we provide our method to approximate effective resistance between neighboring
nodes and our algorithm to select the optimal link for the intervention. In Section 4.5
we analyse the asymptotic behaviour of the bounds in the limit of infinite networks.
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In Section 4.6 we show some simulations over relevant networks. In Section 4.7 we
use similar techniques to extend our analysis to the case of adding a link instead of
modifying a pre-existing one, and discuss the case of multiple interventions. Finally,
in the conclusive section, we summarize the work and discuss future research lines.

4.2 Model and problem formulation

We consider a homogeneous routing game as defined in Section 2.5, with the addi-
tional assumption that the delay functions are assumed affine, and strictly increasing,
i.e.,

dl( fl) = al fl +bl, al > 0, bl ≥ 0, ∀l ∈ E .

We let A ∈RE×E and b ∈RE be

A :=


a1 0 . . . 0
0 a2 . . . 0
...

... . . . ...
0 0 . . . aE

 , b :=


b1

b2
...

bE

 .

Definition 4.1 (Affine routing game). An affine routing game is a quadruple (G,A,b,τ),
where G is a two-terminal directed multigraph.

We assume that every link belongs to at least a route, otherwise it can be removed
without loss of generality. We consider the problem of a planner that aims at
minimizing the social cost by improving a link of the network. We propose as
intervention to rescale the slope of one link l by a scaling parameter κ > 1, so that
the slope of the link l gets reduced from al to ãl = al/κ . This intervention may
correspond for instance to adding a new lane in a street. Actually, every intervention
on a single link may be seen as a rank-1 perturbation of the system and may be
handled by our method (see Section 4.3.1 for more details). We aim at identifying
which link should be selected by the planner to minimize the social cost. Let f∗(l)
and C(f∗(l)) denote the Wardrop equilibrium when the slope of the link l is rescaled,
and the corresponding social cost, respectively. Hence, the problem can be expressed
as follows.
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Problem 4.1. Let (G,A,b,τ) be an affine routing game and κ > 1 be the scaling
parameter. Find link l∗ such that

l∗ ∈ argmin
l∈E

C(f∗(l)).

We stress the fact that Problem 4.1 is bi-level, in the sense that the planner
optimizes the intervention over the link set, but the cost function is a function of the
Wardrop equilibrium f∗, which in turn is the solution of the optimization problem
(2.15). Problem 4.1 can be solved by a brute force approach, by enumerating all
the links and computing the corresponding equilibrium f∗(l) by solving the convex
program (2.15) with dl( fl) = ãl fl + bl instead of the original dl( fl). In this work
we propose a method that, given f∗ before the intervention (which is assumed to
be observable and therefore known) and other electrical quantities computed on
a resistance network related to the original unperturbed transportation network,
provides an upper and lower bound to C(f∗(l)) with a computational complexity
that does not scale with the size of the network. The main idea is that the effect
of perturbing a link may be well approximated by looking at a local portion of the
network. Our method works under the assumption that the network is sparse in
such a way that the average degree of the nodes does not depend on the size of the
network, and under the assumption that the set of the used links does not change
after the intervention. The first assumption is suitable for traffic networks, and the
second one is not new in the literature on intervention in traffic networks [83, 84].
We provide a more detailed discussion on this assumption in Section 4.3.3.

Remark 4.1. Observe that, although negative marginal tolls and our interventions
modify the delay functions in identical way, the resulting optimization problem is
different. In fact, the performance of interventions in optimal tolling literature
are measured by using the old delay functions under the new Wardrop equilibrium
without taking into account the toll explicitly in the cost, i.e., with delay functions
dl(x) = alx+bl . Instead, in our optimization problem both the functional form of
the social cost and the Wardrop equilibrium are modified with an intervention, i.e.,
the social cost is computed using for the link l the delay function dl(x) = ãlx+bl .
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4.3 An electrical formulation

In this section we provide an electrical formulation for Problem 4.1 in terms of
resistor networks. We do this in two steps. First, we exploit the fact that, under the
assumption that the support of the Wardrop equilibrium does not change due to the
intervention, modifying the slope of one link is equivalent to introducing a rank-1
perturbation in the KKT conditions of (2.15). Then, we relate this KKT formulation
to electrical quantities. Furthermore, we discuss the assumption on the support of
Wardrop equilibrium not varying after the intervention, proving that it is guaranteed
to hold on series-parallel networks provided that the throughput is sufficiently large.

4.3.1 KKT formulation

Since the optimal intervention is studied in the homogeneous setting, and since
the delay functions are assumed strictly increasing, the Wardrop equilibrium of the
game is unique, and the unique Wardrop equilibrium may be found by solving an
optimization problem (see Theorem 2.1). Moreover, as proved in Proposition 2.2,
the social cost associated with the unique Wardrop equilibrium may reformulated in
terms of the optimal dual solution, obtained by solving the KKT conditions (2.16).
For the particular case of affine games the KKT conditions read

al f ∗l +bl + γ∗
θ(l)− γ∗

ξ (l)−λ ∗
l = 0 ∀l ∈ E ,

∑l∈E :θ(l)=i fl −∑l∈E :ξ (l)=i fl +νi = 0 ∀i ∈N ,

λ ∗
l f ∗l = 0 ∀l ∈ E ,

λ ∗
l ≥ 0 ∀l ∈ E ,

f ∗l ≥ 0 ∀l ∈ E .

(4.1)

The complementary slackness (third condition) implies that all the links such that
λ ∗

e > 0 are not used at the equilibrium, i.e. f ∗e = 0. Let E+ denote the set of such
links. Thus, the links in E+ and the last three conditions of (4.1) can be removed,
without affecting the solution of (4.1). With a slight abuse of notation, from now on
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let E denote E \E+. Thus, the KKT conditions become:al f ∗l +bl + γ∗
θ(l)− γ∗

ξ (l)−λ ∗
l = 0 ∀l ∈ E ,

∑l∈E :θ(l)=i fl −∑l∈E :ξ (l)=i fl +νi = 0 ∀i ∈N ,
(4.2)

where the constraint f ∗l ≥ 0 can now be removed since the solution of (4.2) gives
f ∗l ≥ 0 for every link l /∈ E+. Without loss of generality, we order the nodes in such a
way that the origin o and the destination d are the first and the last node respectively.
Since for every link l the optimal flow f ∗l depend on γγγ∗ only via the difference
γ∗

ξ (l)− γ∗
θ(l) due to the fact that B is not full-rank, we set γ∗d = 0, which is equivalent

to removing the last row of B. We thus define x and y as

x :=

[
f

γγγ−

]
, y :=−

[
b

ννν−

]
,

where γγγ− and ννν− denote respectively γγγ and ννν where the last element of both vectors
is removed. Also, B− ∈R(N\d)×E denotes the node-link incidence matrix where the
last row is removed. Finally, we define H ∈R(N\d∪E)×(N\d∪E) as

H :=

[
A −(B−)

T

−B− 0(N−1)×(N−1)

]
.

With this notation and assuming γ∗d = 0, the KKT conditions (4.2) become:

Hx∗ = y. (4.3)

Because we assumed γ∗d = 0, x∗ is unique and the following holds:

x∗ = H−1y =

[
A−1 −KQ−1KT −KQ−1

−Q−1KT −Q−1

]
y, (4.4)

where K := A−1BT
− ∈RE×(N\d) and Q := B−A−1BT

− ∈R(N\d)×(N\d). As shown in
[90], the invertibility of H follows from the invertibility of Q, which we prove in the
proof of Theorem 4.1, and the invertibility of A (the delays are strictly increasing).
Let A(l), H(l),Q(l) and K(l) denote the matrix A,H,Q and K after the intervention
on link l.
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Proposition 4.1. Let l ∈ E , and consider the modified game (G,A(l),b,τ) obtained
by changing the slope of link l from al to ãl = al/κ and construct the corresponding
primal and dual solution x∗(l) as in (4.4). Then,

C(f∗)−C(f∗(l)) = τ(γ∗o − γ
∗
o (l)),

where γ∗o and γ∗o (l) are the (E+1)−th component of x∗ and x∗(l) respectively.

Proof. The statement follows from Proposition 2.2, and from γ∗d = 0.

Since τ is a given constant of the problem, Proposition 4.1 states that the goal
of the planner should be to select the link l minimizing γ∗o (l), that is, the optimal
lagrangian multiplier of the origin after the intervention on the link l. Note from
(4.4) that

γγγ
∗ = Q−1(KT b+ννν−). (4.5)

A brute force method would require the computation of γ∗o (l) for every candidate link
l by substituting in (4.5) the corresponding quantities evaluated after the intervention.
A natural question is whether it is possible to evaluate γ∗o (l) for every link l without
recomputing explicitly the first component of γγγ∗(l).We shall see in Section 4.3.2 that
under the following assumption the answer is positive, specifically the social cost
variation may be rephrased in terms of electrical quantities computed on a related
resistor network.

Assumption 4.1. Let E+(l) be the set of links e for which λ ∗
e (l)> 0 in the Wardrop

equilibrium of (G,A(l),b,τ). We assume that E+(l) = E+ for all l ∈ E .

The intuition is that under Assumption 4.1 the KKT conditions (4.3) before and
after the intervention on the link l involve the same set of links and differ in the
value of al only, allowing therefore to handle the intervention as rank-1 perturbation
of H, or equivalently (see (4.5)) of Q. In the next section we provide an electrical
formulation of Problem 4.1.

4.3.2 Electrical formulation

We start providing an interpretation to Q. The notions used in this section are
contained in Appendix A. From the definitions of B− and A, it follows that for a link
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l with ξ (l) = i,θ(l) = j,

Kl: =
δ T

i −δ T
j

al
, (4.6)

with the convention that δd = 0N−1 (since we removed the destination), and

Qi j =


−∑ l∈E :

ξ (l)=i,θ(l)= j, or
ξ (l)= j,θ(l)=i

1
al

if i ̸= j

∑ l∈E :
ξ (l)=i orθ(l)=i

1
al

if i = j.
∀i, j ∈N \d,

We remark that Qii includes also links connecting i with the destination. Note that
Q is symmetric by construction. Moreover, Q allows for an interpretation in terms
of electrical quantities. We construct the resistor network GR = (N ,L,W ) (in the
sense of Definition A.5) in the following way. For every link l ∈ E , we let L contain
{ξ (l),θ(l)}, and let W ∈RN×N be

Wi j :=


∑ l∈E :

ξ (l)=i,θ(l)= j, or
ξ (l)= j,θ(l)=i

1
al

if i ̸= j

0 if i = j.

Observe that W includes also the destination, and is symmetric by construction. The
coefficients al correspond to resistances. We let D ∈ RN×N denote the diagonal
matrix of degree distribution of GR, i.e., D = diag(W1), and P = D−1W ∈RN×N its
normalized adjacency matrix. Note that the matrix Q may be related to the truncated
Laplacian of the resistor network GR. In particular, by letting D̃ and W̃ the restriction
of D and W on N \d,

Q = D̃−W̃ . (4.7)

This is the key point to prove the next theorem. Many notions used for this proof are
contained in Section A.2.

Theorem 4.1. Let (G,A,b,τ) be a routing game, κ > 1 be the scaling parameter,
and suppose Assumption 4.1 holds. The social cost variation corresponding to the
intervention on link l, by letting ξ (l) = i,θ(l) = j, is

∆C(l) :=C(f∗)−C(f∗(l)) = ι
f ∗l (ui −u j)

1
κ−1 +

ri j
al

, (4.8)
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where ι is a constant independent of l, and ri j is the effective resistance between
nodes i and j in the related resistor network GR, and u ∈RN denotes the potential
over the nodes of GR when the boundary conditions uo = 1 and ud = 0 are imposed.

Proof. Note that an intervention on link l corresponds to a rank-1 perturbation of Q.
In particular,

Q(l) = Q+
κ −1

al
Bl
−(B

l
−)

T , (4.9)

where Bl
− denotes the l−th column of B−. By letting ξ (l) = i,θ(l) = j, we get

Bl
− = δi −δ j. Thus, by Sherman-Morrison formula,

Q(l)−1 = Q−1 −
Q−1Bl

−(B
l
−)

T Q−1

al
κ−1 +(Bl

−)
T Q−1Bl

−
. (4.10)

Also, for a link l with ξ (l) = i,θ(l) = j, it holds:

K(l) = K +
κ −1

al
δl(Bl

−)
T = K +

κ −1
al

δl(δi −δ j)
T . (4.11)

From x∗ = H−1y, it follows

γγγ∗−γγγ∗(l)=Q−1(KT b+ννν−)−

(
Q−1− Q−1Bl

−(Bl
−)T Q−1

al
κ−1+(Bl

−)T Q−1Bl
−

)(
KT b+ κ−1

al
Bl
−δ T

l b+ννν−
)

=− κ−1
al

Q−1Bl
−δ T

l b+
Q−1Bl

−(Bl
−)T Q−1

al
κ−1+(Bl

−)T Q−1Bl
−

(
KT b+ κ−1

al
Bl
−δ T

l b+ννν−
) (4.12)

We now give an electrical interpretation to the terms in equation (4.12). To this end,
we let dP = D̃−1W̃ ∈R(N\d)×(N\d)

+ denote the transition matrix of the random walk
induced by the resistor network killed d, defined as in Section A.3. We recall that dP
is substochastic, since the rows referring to nodes pointing to the destination sum to
less than one. Furthermore, let dG = ∑

∞
t=0(dP)t ∈R(N\d)×(N\d)

+ denote the Green’s
function of the killed random walk as defined in Definition A.14. We now prove that
Q is invertible. Indeed,

Q−1 = (D̃−W̃ )−1 = (D̃(I− dP))−1 = (I− dP)−1D̃−1 =
∞

∑
t=0

(dP)tD̃−1 = dGD̃−1,

(4.13)
where the first equivalence follows from (4.7) and the penultimate one follows from
connectedness of GR and (A.17). We now construct Q̂−1 ∈RN×N and dĜ ∈RN×N
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by adding a zero column and a zero row to Q−1, and dG and K̂ ∈RE×N by adding
a zero column to K corresponding to the destination. It follows from (4.13) that
Q̂−1 = dĜD−1, and

(Bl
−)

T Q−1Bl
− = (Bl)T Q̂−1Bl

=
(
δi −δ j

)T
dĜD̃−1(δi −δ j)

=
dĜii − dĜ ji

Dii
+

dĜ j j − dĜi j

D j j
= ri j,

(4.14)

where the last equivalence follows from (A.23). By letting u denote a scaled version
of the potential u, and u− denote its restriction over N \ d, one can prove that
u− = Q−1δo. Indeed, Qu− = δo implies by (4.7) that for any node i ̸= o,d,

Dii(v−)i − ∑
j∈N\d

Wi j(u−) j = 0, =⇒ ui = (u−)i = ∑
j∈N\d

Pi j(u−) j = ∑
j∈N

Pi ju j,

(4.15)
where the last equivalence follows from ud = 0. Thus, u and u are both harmonic
with respect to P (the definition of harmonic function is established in Definition
A.4), both vanishing in the destination but with different condition on the origin,
which implies by Proposition A.1 that u is equivalent to u apart from a multiplicative
factor. Plugging this equivalence and (4.14) in (4.12), we get

γ∗o−γ∗o (l)=− κ−1
al

δ T
o Q−1Bl

−δ T
l b+

δT
o Q−1Bl

−(Bl
−)T Q−1

al
κ−1+(Bl

−)T Q−1Bl
−

(
KT b+ κ−1

al
Bl
−δ T

l b+ννν−
)

=− bl (κ−1)
al

(ui−u j)+
ui−u j
al

κ−1+ri j
(Bl

−)
T Q−1

(
KT b+ννν−+

bl (κ−1)
al

Bl
−

)
=

ui−u j
al

κ−1+ri j

(
− bl

al
(κ−1)(

al
κ−1+ri j)+γ∗i −γ∗j +

bl
al
(κ−1)ri j

)
=

ui−u j
al

κ−1+ri j
(−bl+γ∗i −γ∗j )

=
ui−u j
al

κ−1+ri j
al f ∗l ,

(4.16)

where the third and last equivalences follow from KKT conditions Q−1(KT b+ννν−)=

γγγ∗ and γ∗i − γ∗j = al f ∗l +bl . Proposition 4.1 relates the Lagrangian multiplier to the
social cost, concluding the proof.

In order to solve Problem 4.1 by the electrical formulation, we need to compute
(4.23) for every link l ∈E of the transportation network. The unperturbed equilibrium
f∗ is assumed to be observable and therefore given, and the potential u can be derived
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by solving a sparse linear system (u is harmonic with respect to P = D−1W , as
observed in Section A.2). Observe that u has to be computed only once. However,
the computation of ri j involves the solution of a linear system, and is needed for every
link l, so that the solution of Problem 1 by the electrical formulation requires to solve
E linear systems (see [91]). We then propose a method to approximate the effective
resistance between a pair of neighbors that, under a suitable assumption on the
sparseness of the network, does not scale with the size of the network, allowing for a
more efficient solution to Problem 4.1. Before doing this, we discuss Assumption
4.1.

4.3.3 On Assumption 4.1

In the following we show that Assumption 4.1 is without loss of generality on
series-parallel networks, provided that the throughput is sufficiently large.

Proposition 4.2. Let (G,A,b,τ) be a routing game. If G is a directed series-parallel
network, it exists τ such that for every τ ≥ τ , E+ = /0. Furthermore, if b = 0, E+ = /0
for every τ > 0.

Proof. A sufficient condition under which E+ = /0 is that the first E components
of x∗ = H−1b, corresponding to equilibrium link flows, are nonnegative. Indeed,
since the delay functions are assumed strictly increasing, the Wardrop equilibrium
is solution of strictly convex program. Then, if the flows corresponding to x∗ =
H−1b satisfy the constraint f∗ ≥ 0, then f∗ is feasible and is the unique Wardrop
equilibrium, with λλλ

∗ = 0 because of the complementary slackness. Hence, we look
for conditions satisfying x∗l ≥ 0 for every l ∈ {1, · · · ,E}. Consider an arbitrary link l
with ξ (l) = i,θ(l) = j. From (4.4), and from ννν− = τδo, it follows:

f ∗l =−bl

al
+[KQ−1KT ]l:b+[KQ−1]l:(ννν−).

As shown in the proof of Theorem 4.1, u− = Q−1δo, where u− is the restriction of
the electrical potential computed on the resistor network GR. Then,

f ∗l =−bl

al
+[KQ−1KT ]l:b+ τ

ui −u j

al
.
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If ui −u j > 0, then, for any τ ≥ τ l with

τ l =

bl
al
− [KQ−1KT ]l:b

ui−u j
al

it holds f ∗l ≥ 0, which in turn implies that if τ ≥ τ := maxτ l , then E+ = /0. Moreover,
if the delays are linear, ui−u j implies f ∗l ≥ 0 and E+ = /0 for any value of τ , because
b = 0. We have now to prove that for every link l (ξ (l) = i,θ(l) = j) of the directed
transportation network, ui−u j > 0 in the related resistor network, which is equivalent
to ui −u j > 0. Note by Ohm’s law that ui −u j is positive if and only if the current
flowing from i to j is positive. Then, it suffices to show that such a current is positive.
Observe that, by definition, if the transportation network is a directed series-parallel,
it is a single link from o to d or it can obtained by connecting in series or in parallel
two directed series-parallel networks. Thus, a series-parallel network can be reduced
to a single link by recursively 1) merging two links l1 and l2 connected in series
into a single link l3, with a3 = a1 +a2 (recall that the coefficients ae correspond to
resistances on the resistor network), and 2) merging two links l1 and l2 connected
in parallel into a single link l3, with a3 = a1a2/(a1 +a2). Moreover, observe that in
both cases i3 > 0 if and only if i1 > 0 and i2 > 0. Indeed, in case 1) i3 = i1 = i2, and
in case 2) i1 = i2a2/a1 and i3 = i1 + i2. Obviously, when the transportation network
is reduced to a single link from o to d, the flow on the unique link is positive because
τ > 0. Then, by applying those arguments recursively, for every link l ∈ E with
i = ξ (l), j = θ(l), we get il > 0, which implies by Ohm’s law that ui−u j > 0. Thus,
if τ ≥ τ then f ∗l ≥ 0 and E+ = /0, concluding the proof.

Remark 4.2. Proposition 4.2 immediately implies that Assumption 4.1 is without
loss of generality on directed series-parallel networks provided that τ ≥ τ .

The next example shows that if the throughput is not sufficiently high Assumption
4.1 does not hold. However, requiring that the throughput is large does not seem a
restrictive assumption for traffic applications, given the high congestion and demand
of urban networks.

Example 4.1. Consider the network in Figure 4.1, which is series-parallel. Let
τ = 1, and consider affine delay functions with d1( f1) = f1,d2( f2) = f2 +1/2. The
corresponding Wardrop equilibrium is

f ∗1 = 3/4, f ∗2 = 1/4, λ
∗
1 = λ

∗
2 = 0.
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o d

l2

l1

Fig. 4.1 A directed series-parallel network. If the throughput is not sufficiently large,
Assumption 4.1 is not guaranteed to hold.

Turning a1 from 1 to 1/3, we get:

f ∗1 = 1, f ∗2 = 0, λ
∗
1 = 0, λ

∗
2 = 1/6,

violating Assumption 4.1. Proposition 4.2 proves that this cannot occur if τ is
sufficiently large.

4.4 An approximate solution to Problem 1

As seen in the previous section, Problem 4.1 may be rephrased in terms of electrical
quantities over a resistor network. However, even in this formulation the complexity
of the problem scales badly because it requires to solve E linear systems whose
size grows linearly with N. While u may be found in quasi-linear time by solving
a sparse linear system (see [92]), the computational bottleneck is represented by
the computation of the effective resistance between every pair of adjacent nodes of
the network. To compute all the effective resistances one needs to solve E linear
systems, or alternatively to invert the matrix Q ∈R(N\d)×(N\d) or to compute the
pseudoinverse of the laplacian of the resistor network (see [93] for details). For
this reason, in the next subsection we propose a computationally cheaper method
to approximate this quantity. The main idea of our method is that, even though the
effective resistance depends on the entire network, when i and j are adjacent nodes,
ri j can be approximated by looking at a local portion of the network only. Such an
approximation relies on cutting and shorting techniques, which have been introduce
in Chapter 2. We then formulate an algorithm to approximately solve Problem 4.1
by exploiting the approximation of the effective resistance.
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4.4.1 Approximating the effective resistance

Let us introduce the notion of cutting and shorting a resistor network at a distance
d from a certain set of nodes. We refer to A.2 for the general notion of cutting and
shorting in resistor networks.

Definition 4.2 (Cutting at distance d). Cutting a resistor network GR at distance d
with respect to a subset of nodes S ∈ N means removing from GR all the nodes at
distance greater than d from S , i.e., all nodes not belonging to Nd(S), and every link
having at least one end-point in the set of the removed nodes. Let GUd

S denote such a
resistor network. If S = {i, j}, we let for simplicity GUd

i j denote the cut network, and
rUd

i j denote the effective resistance on it.

Definition 4.3 (Shorting at distance d). Shorting a resistor network GR at distance d
with respect to a subset of nodes S ∈ N means shorting together all the nodes of GR

all the nodes at distance greater than d, i.e., all the nodes belonging to N \Nd(S).
Let GLd

S denote such a resistor network. If S = {i, j}, we let for simplicity GLd
i j denote

the shorted network, and rLd
i j denote the effective resistance on it.

We refer to Figure 4.2 for an example of these techniques applied to a regular
grid. We now prove that a hierarchy between effective resistance on cut and shorted
resistor network exist.

Proposition 4.3. Let GR be a resistor network and ri j be the effective resistance
between any two neighboring nodes i and j. Then,

r
Ud1
i j ≥ r

Ud2
i j ≥ ri j ≥ r

Ld2
i j ≥ r

Ld1
i j , ∀ d2 ≥ d1 ≥ 1.

Moreover,
1/Dmax ≤ rLd

i j ≤ rUd
i j ≤ 1/Wi j, ∀d ≥ 1, (4.17)

where Dmax denotes the maximal weighted degree of the resistor network, i.e., the
maximal element of D.

Proof. The first set of inequality follows from Rayleigh’s monotonicity laws, enun-
ciated in Lemma A.1. The right inequality in (4.17) follows from noticing that,
by Rayleigh’s monotonicity laws, the effective resistance computed in the network
with only nodes i and j is an upper bound for rU1

i j , and is equal to 1/Wi j. The left
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Fig. 4.2 Square grid. Above: the yellow, orange and red nodes are at distance 1, 2 and 3,
respectively from the green nodes. Bottom left: cut at distance 1. Bottom right: shorted at
distance 1. We stress that in the bottom right network the links connecting yellow nodes with
node s do not have unitary weights.
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inequality follows from noticing that the effective resistance on the network in which
every node except j is shorted with i, which results in a network with only two nodes
and a conductance between i and j, is no greater than Dmax (hence, resistance no less
than 1/Dmax) is a lower bound for rL1

i j .

4.4.2 Our algorithm

Based on the method for approximating the effective resistance, we here propose an
algorithm to approximately solve Problem 4.1. Our approach is detailed in Algorithm
1. Note that the performance of Algorithm 1 depends on the choice of the parameter d.

ALGORITHM 1:
Input: The transportation network G = (N ,E), the resistor network

GR = (N ,L,W ), the rescale parameter κ and the distance d ≥ 1 used
to approximate the effective resistance.

Output: The optimal link l∗d for the intervention.
Compute u by solving the sparse linear system

uo = 1, ud = 0, ui = ∑
j∈N

Pi ju j ∀i ∈N \{o,d};

for each l ∈ E (let i = ξ (l), j = θ(l)) do
Construct GUd

i j and GLd
i j ;

Compute rUd
i j and rLd

i j on GUd
i j and GLd

i j .
end
Select l∗d such that

l∗d ∈ argmax
l∈E

∆Cd(l) :=
f ∗l (ui)−u j)

1
κ−1 +

r
Ud
i j +r

Ld
i j

2al

.

Specifically, the higher d is the better is the approximation of the effective resistance
and the closer is the output of Algorithm 1 to achieve the minimum of Problem 1.

Theorem 4.2. Let ∆C(l) be the social cost variation corresponding to intervention
on link l with ξ (l) = i,θ(l) = j as given in Theorem 4.1, ∆Cd(l) be the social cost
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variation estimated by Algorithm 1 for a given distance d ≥ 1, and

εi jd :=
rUd

i j − rLd
i j

al
.

Then, ∣∣∣∣∆C(l)−∆Cd(l)
∆C(l)

∣∣∣∣≤ εi jd

2
(

1
κ−1 +

r
Ud
i j +r

Ld
i j

2al

) ≤
εi jd

2
(

1
κ−1 +

1
Dmax·al

)
Furthermore,

∆C(l)≥ ι
f ∗l (ui −u j)

1
κ−1 +

r
Ud
i j
al

. (4.18)

Proof. First, note that

|∆C(l)−∆Cd(l)|=

∣∣∣∣∣ι f ∗l (ui −u j)
1

κ−1 +
ri j
al

− ι
f ∗l (ui −u j)

1
κ−1 +

r
Ud
i j +r

Ld
i j

2al

∣∣∣∣∣
=

∣∣∣∣∣ι f ∗l (ui −u j)
1

κ−1 +
ri j
al

∣∣∣∣∣ ·
∣∣∣∣∣

r
Ud
i j +r

Ld
i j −2ri j

2al

1
κ−1 +

r
Ud
i j +r

Ld
i j

2al

∣∣∣∣∣,
Note also that

|rUd
i j + rLd

i j −2ri j|
al

≤
|rUd

i j − ri j|+ |ri j − rLd
i j |

al
=

rUd
i j − ri j + ri j − rLd

i j

al
=

rUd
i j − rLd

i j

al
= εi jd.

Putting those two together, and using the formula for C(l) obtained in Theorem 4.1,
we get ∣∣∣∣∆C(l)−∆Cd(l)

∆C(l)

∣∣∣∣≤ εi jd

2
(

1
κ−1 +

r
Ud
i j +r

Ld
i j

2al

) ≤
εi jd

2
(

1
κ−1 +

1
Dmax·al

) ,
where the last inequality follows from (4.17). Eq. (4.18) follows from rUd

i j ≥ ri j and
from Theorem 4.1, concluding the proof.

In the next section we provide conditions for εi jd to vanish for large distance d
in the limit of infinite networks. In the rest of this section we show that the tightness
of the bounds (and therefore εi jd), and their computational complexity (for a fixed d)
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depend only on the local structure around the link l, and do not scale with the size of
the network, under a suitable assumption.

Assumption 4.2. Let GR be a resistor network, l an arbitrary link of the network.
We assume that the network is sparse in such a way that for every d the cardinality
Nd({ξ (l),θ(l)}) does not depend on N.

Assumption 4.2 is suitable for transportation networks, because of physical
constraints not allowing for the degree of the nodes to grow unlimitedly (think for
instance of a square grid, where the degree of the nodes is 4 no matter what the size
of the network is). Notice also that, under Assumption 4.2, N and E are proportional.
Hence, from now on we refer indistinctly to N or E to denote the size of the network.

Proposition 4.4. Let GR = (N ,L,W ) be a resistor network, {i, j} be a pair of
neighboring nodes, d ≥ 1. Then, the time complexity of the bounds and the tightness
of the bounds are functions of the structure of GR within distance d +1 from {i, j}
only. Furthermore, under Assumption 4.2 they do not depend on the size of the
network.

Proof. The cut and shorted networks are obtained by finding the neighbors within
distance d and d+1 from {i, j}, respectively. The neighbors of a node i can be found
by checking the non-zero elements of W (i, :). The neighbors within distance d can
be found by iterating such operation d times. Hence, the time for building the cut
and the shorted network depends on the local structure, which, under Assumption
4.2, does not depend on the size of the network. Since the bounds of the effective
resistance are computed on these subnetwork, their time complexity and tightness
depends on local structure, which, under Assumption 4.2, is independent of the size
of the network.

Remark 4.3. Proposition 4.4 states that under Assumption 4.2 the time complexity to
approximate a single effective resistance does not scale with the size of the network
for every distance d. Therefore, all the effective resistances may be approximated
in linear time. u is computed via a diagonally dominant, symmetric and positive
definite linear systems. The design of fast algorithms to solve this class of problem is
an active field of research in the last years. To the best of our knowledge, the best
algorithm has been provided in [92] and has complexity O(M logk Nlog1/ε), where
ε is the tolerance error, k is a constant, and M is the number of nonzero elements
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in the matrix of the linear system. Since in our case M scales with E, and since
E scales with N under Assumption 4.2, Algorithm 1 is quasilinear in N. Although
our main focus is not specifically on computational complexity, but more on the
methodological aspects, we remark that other approaches have a complexity at
least quadratic in the number of nodes compared to the quasi-linear performance of
Algorithm 1. Other approaches include:

• solving E convex programs as (2.15), one for every link l ∈ E with ãl instead
of al;

• exploit the characterization (4.5) to compute γ∗o (l). This method requires the
computation of the first row of Q−1(l) for every link l ∈ E;

• exploit the electrical characterization and compute exactly all the ri j, which re-
quires to invert Q∈RN×N , together with the computation of u as in Algorithm
1.

4.5 Bound analysis

In this section we provide a characterization of the tightness of the bounds of the
effective resistance between neighbors in terms of random walks over the resistor
networks GR, GUd

i j and GLd
i j . We then use this characterization to provide a sufficient

condition on the resistor network under which the approximation error of the bounds
vanishes asymptotically as the distance d grows. To this end, we interpret the matrix
P of the network as the transition matrix of the associated random walk as defined
in Definition A.17, and introduce the following notation. Let pk(X), pUd

k (X) and
pLd

k (X), denote the probability that the event X occurs, given a random walk that
starts in k at the initial time, and evolves over the resistor networks GR, GUd

i j and
GLd

i j , respectively. The next proposition provides a characterization for the distance
between the upper and lower bound on ri j in terms of probabilities of random walks
over GR, GUd

i j and GLd
i j . Many of the notions needed for this proof are contained in

Section A.3.
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Proposition 4.5. Let GR = (N ,L,W ) be a resistor network. Based on the random
walk on the resistor network, for every pair of neighboring nodes (i, j),

rUd
i j − rLd

i j ≤ Dii

(Wi j)2 pi(T∂d
< Tj)︸ ︷︷ ︸

Term 1

· max
g∈∂d

(
pUd

g (Ti < Tj)− pLd
g (Ti < Tj)

)︸ ︷︷ ︸
Term 2

, (4.19)

where for simplicity of notation ∂d denotes ∂d({i, j}), and TX denotes the hitting
time on a set of nodes X , as provided in Definition A.11.

Proof. We introduce the following notation:

• The index Ud and Ld indicate that the random walk takes place over GUd
i j and

GLd
i j , respectively. So, for instance, kGUd

i j denotes the expected number of times
that the random walk on the network GUd

i j , starting from i, hits j before hitting
k;

• pi(Tj = TS), with j ∈ S , denotes the probability that the random walk starting
from i hits the node j ∈ S before hitting any other node in S.

By applying (A.23) to the effective resistance of a link l with ξ (l) = i,θ(l) = j in
the shorted and the cut network, it follows

rUd
i j =

jG
Ud
ii

Dii
, rLd

i j =
jG

Ld
ii

Dii
, (4.20)

where we recall that jG
Ud
ii and jG

Ld
ii are the expected number of visits on i, before

hitting j, starting from i, of the random walk defined on GUd
i j and GLd

i j respectively.
The visits on i before hitting j can be divided in two disjoint sets:

• the visits before hitting j and before visiting any node in ∂d; and

• the visits before hitting j and after visiting any node in ∂d .

Let G<∂d
ii denote the expected number of visits to i, starting from i, before hitting

any node in ∂d and before hitting the absorbing node j (for simplicity of notation
we omit the index j from now on). Note that GUd

i j and GLd
i j differ only in the node s,

which consists in the node obtained by shorting all the nodes at distance greater than
d from i and j. Since s cannot be reached before hitting nodes in ∂d before, G<∂d

ii is
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equivalent when computed on GUd
i j and GLd

i j . Moreover, let GU>∂d
ii and GL>∂d

ii denote
the expected number of visits to i, starting from i, before hitting j but after at least
one node in ∂d has been visited in the network GUd

i j and GLd
i j , respectively. Thus,

GUd
ii = G<∂d

ii +GU>∂d
ii ,

GLd
ii = G<∂d

ii +GL>∂d
ii .

This implies by (4.20)

rUd
i j − rLd

i j =
GU>∂d

ii −GL>∂d
ii

Dii
. (4.21)

Notice that GU>∂d
ii can be written as the sum over the nodes g ∈ ∂d of the probability,

starting from i, of hitting g and going back to i without hitting j, multiplied by the
expected number of visits on i starting from i, before hitting j, which is the derivative
of a geometric sum 1. Therefore,

GU>∂d
ii = ∑

g∈∂d

pi(Tg = Tj∪∂d
)︸ ︷︷ ︸

(1)

pUd
g (Ti < Tj)︸ ︷︷ ︸

(2)

∞

∑
k=1

k
(

pUd
i (T+

i < Tj)
)k−1︸ ︷︷ ︸

(3)

(
1− pUd

i (T+
i < Tj)

)︸ ︷︷ ︸
(4)

=
∑g∈∂d

pi(Tg = Tj∪∂d
)pUd

g (Ti < Tj)

1− pUd
i (T+

i < Tj)
,

where:

1. probability from i of hitting g before hitting j and any other node in ∂d;

2. probability from g of hitting i before j;

3. probability from i of hitting i k−1 times before hitting j;

4. probability from i of hitting j before i.

1Note that for α < 1, ∑
∞
k=1 kαk−1(1−α) = (1−α) · d

dα
[∑∞

k=0 αk] = (1−α) d
dα

( 1
1−α

)
= (1−

α) 1
(1−α)2 = 1

1−α
.
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Similarly,

GL>∂d
ii = ∑

g∈∂d

pi(Tg = Tj∪∂d
)pLd

g (Ti < Tj)
∞

∑
k=1

k
(

pLd
i (T+

i < Tj)
)k−1(1− pLd

i (T+
i < Tj)

)
=

∑g∈∂d
pi(Tg = Tj∪∂d

)pLd
g (Ti < Tj)

1− pLd
i (T+

i < Tj)
.

Substituting in (4.21) yields

rUd
i j − rLd

i j =
1

Dii
∑

g∈∂d

pi(Tg = Tj∪∂d
)

(
pUd

g (Ti < Tj)

1− pUd
i (T+

i < Tj)
−

pLd
g (Ti < Tj)

1− pLd
i (T+

i < Tj)

)
.

From (A.23), it follows

rUd
i j =

1

Dii p
Ud
i (Tj < T+

i )
=

1

Dii
(
1− pUd

i (T+
i < Tj)

) ,
rLd

i j =
1

Dii p
Ld
i (Tj < T+

i )
=

1

Dii
(
1− pLd

i (T+
i < Tj)

) .
Thus,

rUd
i j − rLd

i j = ∑
g∈∂d

pi(Tg = Tj∪∂d
)
(

pUd
g (Ti < Tj)r

Ud
i j − pLd

g (Ti < Tj)r
Ld
i j
)

= ∑
g∈∂d

pi(Tg = Tj∪∂d
)
(

pUd
g (Ti < Tj)− pLd

g (Ti < Tj)
)
rUd

i j +

+ ∑
g∈∂d

pi(Tg = Tj∪∂d
)pLd

g (Ti < Tj)(r
Ud
i j − rLd

i j )

≤ ∑
g∈∂d

pi(Tg = Tj∪∂d
)
(

pUd
g (Ti < Tj)− pLd

g (Ti < Tj)
)
rUd

i j +

+ ∑
g∈∂d

pi(Tg = Tj∪∂d
)(rUd

i j − rLd
i j )

= ∑
g∈∂d

pi(Tg = Tj∪∂d
)
(

pUd
g (Ti < Tj)− pLd

g (Ti < Tj)
)
rUd

i j +

+ pi(T∂d
< Tj)(r

Ud
i j − rLd

i j ),
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Table 4.1 All the four cases are possible, as shown in Section 4.5.2. Term 1 → 0 under the
assumption that the network is recurrent, as proved in Section 4.5.1.

Term 2 → 0 Term 2 ↛ 0
Term 1 → 0 2d grid Ring
Term 1 ↛ 0 3d grid Double tree

where the last inequality follows from pL
g(Ti < Tj)≤ 1 and the last equality from the

fact that pi(T∂d
< Tj) = ∑g∈∂d

pi(Tg = Tj∪∂d
). It follows

rUd
i j − rLd

i j ≤
∑g∈∂d

pi(Tg = Tj∪∂d
)
(

pU
g (Ti < Tj)− pL

g(Ti < Tj)
)
rUd

i j

1− pi(T∂d
< Tj)

≤ ∑
g∈∂d

pi(Tg = Tj∪∂d
)
(

pU
g (Ti < Tj)− pL

g(Ti < Tj)
)
rUd

i j
Dii

Wi j

≤ pi(T∂d
< Tj) · max

g∈∂d

(
pU

g (Ti < Tj)− pL
g(Ti < Tj)

) Dii

(Wi j)2 .

where the second inequality follows from

1− pi(T∂d
< Tj) = pi(Tj < T∂d

)≥ Pi j =Wi j/Dii

and the last one from rUd
i j ≤ 1/Wi j (as shown in (4.17)) and from pi(T∂d

< Tj) =

∑g∈∂d
pi(Tg = Tj∪∂d

).

In the next subsection we use this result to study the asymptotic behaviour of the
error term εi jd = (rUd

i j − rLd
i j )/al . In Section 4.5.1 we show that this error goes to zero

for the class of recurrent networks (the notion of recurrent network is provided in
Definition A.18). The core idea to prove this result is to show that Term 1 in (4.19)
goes to zero. To generalize our analysis beyond recurrent networks, in Section 4.5.2
we study both Term 1 and 2 and provide examples showing that all combinations
are possible (see Table 4.1). In particular, it is still possible that εi jd → 0 for non-
recurrent networks (for which Term 1 does not tend vanish) if Term 2 vanishes.
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4.5.1 Recurrent networks

In this section we show that a sufficient condition under which the distance between
the upper and the lower bound vanishes as the distance d goes to infinity is that the
resistor network is recurrent, provided that the degree of every node is finite.

Theorem 4.3. Let GR be an infinite recurrent resistor network, and let Dmax be finite.
Then, for every link l (let ξ (l) = i,θ(l) = j),

lim
d→+∞

(rUd
i j − rLd

i j ) = 0.

Proof. As stated in (A.20), a network is recurrent if and only if

lim
d+→+∞

pi(T∂d
< Tj) = 0 ∀i, j ∈N . (4.22)

Observe that, to hit any node at distance d + 1, the random walk starting from i
has to hit at least a node at distance d. Hence, the sequence

{
pi(T∂d

< Tj)
}+∞

d=1 is
non-increasing in d and the limit is well defined. Then, from (4.19), (4.22), from the
fact that 0≤ pUd

g (Ti < Tj)− pLd
g (Ti < Tj)≤ 1 for every node g. From the assumptions

Dmax <+∞ and Wi j > 0 (recall that i and j are adjacent nodes), it follows

lim
d→+∞

rUd
i j − rLd

i j ≤ Dmax

(Wi j)2 lim
d→+∞

pi(T∂d
< Tj) = 0,

which completes the proof.

Remark 4.4. Theorem 4.3 implies that limd→+∞ εi jd = 0 on recurrent networks for
every neighboring nodes i and j. Hence, by Theorem 4.2, the social cost variation
corresponding to intervention on link l can be estimated with vanishing error. Ob-
serve that not only the error term εi jd , but also the relative error εi jd/ri j, vanishes
asymptotically, since ri j ≥ 1/Dmax.

Recurrence is a sufficient condition to guarantee limd→+∞ εi jd = 0, but is not
necessary, as discussed in the next subsection.

4.5.2 Beyond recurrence

We here provide examples of infinite networks for all of the cases in Table 4.1.
Observe that, for every link l (let ξ (l) = i,θ(l) = j), the network cut at distance
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Fig. 4.3 Bidimensional square grid, cut at distance d = 3. The red nodes belong to ∂d . As d
grows, pg(Ti < Tj) approaches 1/2 for each g ∈ ∂d , because there are many short paths.

d from l and the network shorted at distance d from l differ in a node only. Let s
denote such a node, which is the result of shorting all the nodes at distance greater
than d from both i and j in a unique node. Intuitively speaking, our conjecture is that
Term 2 in (4.19) is small when the resistor network has many short paths between
I and j. Indeed, in this case, adding the node s does not largely affect probability,
starting from any node in ∂d , of hitting i before j, thus making Term 2 small. This
intuition can be made more clear by the next examples.

2d grid

Consider an infinite unweighted bidimensional grid as in Figure 4.3. This network is
relevant for the NDP since many transportation networks are very similar to grids.
This network is recurrent, as shown in Example A.3, hence Theorem 4.3 guarantees
that Term 1 and thus εi jd go to 0 for large d for every pair of adjacent nodes (i, j).
Our conjecture, confirmed by numerical simulations, is that, for every node g ∈ ∂d ,

lim
d→+∞

pUd
g (Ti < Tj) = 1/2, lim

d→+∞
pLd

g (Ti < Tj) = 1/2.

Hence, this is recurrent network for which also Term 2 vanishes asymptotically.
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GL2
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c e

Fig. 4.4 Left: shorted ring at distance d = 2. Right: cut ring at distance d = 2.

3d grid

Consider an infinite unweighted tridimensional grid. This network is not recurrent
[94], therefore Term 1 does not go to 0 and we cannot conclude that εi jd → 0
from Theorem 4.3. Nonetheless, numerical simulations show that, similarly to the
bidimensional grid, for every node g ∈ ∂d ,

lim
d→+∞

pUd
g (Ti < Tj) = 1/2, lim

d→+∞
pLd

g (Ti < Tj) = 1/2.

Hence, this is a non-recurrent network for which Term 2 (and therefore εi jd) vanishes
as the distance grows.

Ring

Consider an infinite unweighted ring as in Figure 4.4. Consider nodes c and e as in
Figure 4.4. Then,

pUd
c (Ti < Tj) = 1, pUd

e (Ti < Tj) = 0.

for each d (even d →+∞), whereas,

pLd
c (Ti < Tj) =

d
2d +1

d→+∞−−−−→ 1
2
, pLd

e (Ti < Tj) =
d +1

2d +1
d→+∞−−−−→ 1

2
,

since this case is equivalent to the gambler’s ruin problem [94]. Hence, Term 2 does
not vanish for the ring. This is due to the fact that, on the ring, all the paths from
c to j not passing in i include the node s. Still, Term 1, and therefore εi jd , vanish
asymptotically by Theorem 4.3, since this network is recurrent.
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i j

Fig. 4.5 The double tree is an infinite non-recurrent network. On this network limd→+∞ εi jd =
1/3.

Double tree network

We finally propose an infinite network for which εi jd does not converge asymptoti-
cally. This network is not relevant for traffic applications, since it admits one path
only between every pair of nodes, but provides an interesting counterexample where
the bounds do not converge asymptotically. The network is composed of two infinite
rooted trees, starting from node i and j respectively, linked by a link l, as in Figure
4.5, and the links are assumed to have unitary conductance. It can be shown that on
the double tree network the probability that the random walk, starting from i, returns
on i is equal to the same quantity for a biased random walk over an infinite line (for
more details we refer to the Appendix D). Since the biased random walk on a line
is not recurrent (see [94])), this equivalence shows that the double tree network is
non-recurrent, and Term 1 → 0. Moreover, we show in Appendix D that

lim
d→+∞

rUd
i j − rLd

i j =
1
3
,

thus implying that Term 2 ↛ 0.

4.6 Simulations

In this section we illustrate numerical simulations on bidimensional grids, which
provide a good proxy of transportation networks, and on a real dataset.
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Fig. 4.6 Average relative error of the bounds on Oldenburg network as a function of distance
d.

4.6.1 Infinite grids

Infinite regular grids are useful to test the performance of the bounds. Indeed, despite
having an infinite number of nodes, the effective resistance between adjacent nodes
can be computed exploiting the symmetric structure of the grid. We focus on the
square grid, but similar arguments can be applied to any regular infinite grid. In
Table 4.2 the performance of the upper and lower bounds are shown. Numerical
simulations show that for every link l (let ξ (l) = i,θ(l) = j),

rUd
i j − ri j

ri j
=

ri j − rLd
i j

ri j
= O(1/d2).

We underline that the relative errors of the bounds are symmetric only in the square
grid, but they scale similarly in all the regular bidimensional grids. Observe that,

Table 4.2 Table of upper and lower bound in infinite square grid.

d = 1 d = 2 d = 3 d = 4 d = 5
(rUd

i j − ri j)/ri j 1/5 0.0804 0.0426 0.0262 0.0178
(ri j − rLd

i j )/ri j 1/5 0.0804 0.0426 0.0262 0.0178

despite the network being infinite, even at d = 5, the upper and the lower bounds
give a good estimation of the true effective resistance.
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4.6.2 Simulations on a real transportation network

In this section we present the performance of the cutting and shorting techniques
on the traffic network of the city of Oldenburg ([95]). The network is composed of
6105 nodes and 7035 links, and its diameter is 104. The network is assumed to be
unweighted, with al = 1 for every link l (let as usual ξ (l) = i,θ(l) = j). The average
relative error of the bounds, i.e.,

ATd :=
1
E ∑

l∈E

rUd
i j − rLd

i j

ri j

is shown in Table 4.3 and Figure 4.6. Even for this network, the error of the bounds

Table 4.3 Table of the average relative error of the bounds at distance d.

d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8 d=9 d=10
ATd 0.21 0.12 0.079 0.056 0.041 0.031 0.024 0.019 0.016 0.012

decreases quickly, compared to the diameter of the network.

4.7 Additional considerations

4.7.1 Adding a link

In the last section of this chapter we present an analogous problem for the case of
adding a link instead of improving an existing one. A similar interpretation in terms
of resistor networks can be obtained. However, since the two terminal nodes of the
new link can be in principle be distant in the original network, the approximation
methods of the effective resistance do not apply. As before, our characterization
works under the assumption that the set of the used links does not change due to the
intervention, except for the new link. Let l be the candidate link to constructed, let
G(l) be the network that is obtained by adding the link l to the network G, and let
A(l),b(l),x(l), the corresponding quantities. Our characterization works under the
following assumption.

Assumption 4.3. Let E+(l) be the set of links e for which λ ∗
e (l)> 0 in the Wardrop

equilibrium of (G,A(l),b(l),τ). We assume that E+(l) = E+ for all l ∈ E .
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Theorem 4.4. Let (G,A,b,τ) be a routing game. Consider a candidate new link l,
and the game (G(l),A(l),b(l),τ) corresponding to addition of link l. Assume that
Assumption 4.1 for the link l holds. By letting ξ (l) = i,θ(l) = j, the social cost
variation corresponding to the addition of link l is

∆C(l) :=C(f∗)−C(f∗(l)) = ι
(ui −u j)(γ

∗
i − γ∗j −bl)

al + ri j
, (4.23)

where ι is a constant independent of l, ri j is the effective resistance between nodes i
and j on the related resistor network GR, and u ∈RN denotes the potential over the
nodes of GR when the boundary conditions uo = 1 and ud = 0 are imposed.

Proof. The proof follows the steps of the proof of Theorem 4.1. Note that adding
link l corresponds to a rank-1 perturbation of Q. In particular,

Q(l) = Q+
1
al

Bl
−(B

l
−)

T , (4.24)

where Bl
− denotes the l−th column of B−. Thus, by Sherman-Morrison formula,

Q(l)−1 = Q−1 −
Q−1Bl

−(B
l
−)

T Q−1

al +(Bl
−)

T Q−1Bl
−
. (4.25)

Also, for a link l with ξ (l) = i,θ(l) = j, it holds:

K(l) =

(
K

(Bl
−)

T/al

)
. (4.26)

From x∗ = H−1y, it follows

γγγ
∗− γγγ

∗(l) = Q−1(KT b+ννν−)−
(

Q−1 −
Q−1Bl

−(B
l
−)

T Q−1

al +(Bl
−)

T Q−1Bl
−

)(
KT b+

bl

al
Bl
−+ννν−

)
=−bl

al
Q−1Bl

−+
Q−1Bl

−(B
l
−)

T Q−1

al +(Bl
−)

T Q−1Bl
−

(
KT b+

bl

al
Bl
−+ννν−

)
(4.27)
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Fig. 4.7 An example to show that the social cost is not submodular.

We now follow same steps as in the proof of Theorem 4.1, i.e., we substitute
ri j = (Bl

−)
T Q−1Bl

− and u− = Q−1δo. Thus,

γ
∗
o − γ

∗
o (l) =−bl

al
(ui −u j)+

ui −u j

al + ri j
(Bl

−)
T Q−1

(
KT b+

bl

al
Bl
−+ννν−

)
=

ui −u j

al + ri j

(
−bl

al

(
al + ri j

)
+ γ

∗
i − γ

∗
j +

bl

al
ri j

)
=

ui −u j

al + ri j

(
−bl + γ

∗
i − γ

∗
j
)

(4.28)

where the third equivalence follows from KKT conditions Q−1(KT b+ννν−) = γγγ∗.
Proposition 4.1 relates the Lagrangian multiplier to the social cost, concluding the
proof.

Remark 4.5. A corollary of Theorem 4.1 is that Braess’ paradox cannot occur if the
network is series-parallel, i.e., improving a link cannot have a negative impact on the
social cost. To prove this, we refer to the proof of Proposition 4.2, where it is proved
that if the original directed network is series-parallel and ξ (l) and θ(l) are the
end-nodes of a link l ∈ E , then the electrical potential on the related resistor network
is decreasing along the link, i.e., it satisfies uξ (l)−uθ(l) > 0. Note that this remark
on Braess’ paradox holds under the assumption that delay functions are affine and
the support of Wardrop equilibrium is not modified by the intervention. A more
general result on non-emergence of Braess’ paradox in series-parallel networks is
already established in a more general setting in [96, Theorem 1].

4.7.2 On submodularity of the objective function

Our methods work for a single intervention, since a single intervention may be seen
as a rank-1 perturbation of the KKT conditions. It is natural then to ask whether our
results can be generalized. A typical way to proceed is to show that the objective
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function (to be maximized) is submodular, and in such a case one can apply the
greedy algorithm with performance guarantees [97, 98]. Such an approach is used
for instance in [99] in an optimal target problem, with the goal of maximizing the
spread of influence through social networks. Unfortunately, we here show by an
example that our objective function is not in general submodular.

Definition 4.4. Let X be a set of elements, and consider a function g : 2X →R. g
is submodular if for every pair of sets S,T such that S ⊂ T ⊂ X and additional
element x ∈ X ,

g(S ∪{x})−g(S)≥ g(T ∪{x})−g(T ).

Example 4.2. Consider the network in Figure 4.7, let τ = 3, and consider delay
functions

d1( f1) = f1 +1, d2( f2) = 2 f2 +2, d3( f3) = f3 +4. (4.29)

The Wardrop equilibrium and the optimal lagrangian multiplier (by setting γ∗d = 0)
are respectively

f∗ =

 1
1
2

 , γγγ
∗ =

 6
4
0

 . (4.30)

We now consider an intervention on link e1, with rescaling factor κ = 2, which leads
to d1( f1) = f1/2+1. The corresponding solution is

f({e1})∗ =

 8/7
8/7

13/7

 , γγγ({e1})∗ =

 41/7
30/7

0

 . (4.31)

Intervening on link e2 leads to

f({e2})∗ =

 4/3
4/3
5/3

 , γγγ({e2})∗ =

 17/3
10/3

0

 . (4.32)

Finally, intervention on both e1 and e2 leads to

f({e1,e2})∗ =

 8/5
8/5
7/5

 , γγγ({e1,e2})∗ =

 27/5
18/5

0

 . (4.33)
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Let T = {e1}, S = /0, which satisfies S ⊂ T . Our objective function to be maximized
is −γ∗o , since γ∗o is equivalent to the social cost unless for a negative proportionality
factor. Note that

γ
∗
o (T )− γ

∗
o (T ∪{e2}) = 41/7−27/5 = 16/35, (4.34)

γ
∗
o (S)− γ

∗
o (S ∪{e2}) = 6−17/3 = 1/3. (4.35)

The last two equations together show that an intervention on link e2 after intervention
on e1 leads to a greater social cost gain than an intervention on e2 only, and showing
thus that our objective function is not submodular. Such a result is not surprising:
indeed, after intervention on e1 more users will use route (e1,e2), thus making more
users positively affected by a second intervention on link e2.

4.8 Conclusions

In this work we study a discrete network design problem, where a single link can be
improved. We reformulate the problem in terms of electrical quantities, in particular
in terms of the effective resistance of the link, and provide a method to approximate
the effective resistance of a link by performing only local computations. Both the
tightness and the computational complexity of our bounds do not depend on the size
of the network, but on the local structure of the network only. Based on the electrical
formulation and our approximation method for the effective resistance we propose an
efficient algorithm to solve the network design problem in approximation. We then
study the optimality of our algorithm in the limit of infinite resistor networks, and
prove analytically that if the network is recurrent the approximation error vanishes
asymptotically. Finally, we show by simulations that the approximation of the
effective resistance achieves good performance even for small distances, both on
infinite square grids and on a real dataset.

While our theoretical results characterize only the asymptotic performance of
our algorithm, an interesting direction for the future is a deeper analysis on the
performance for finite distances d. Finding an efficient algorithm to select the best
new link to add in a transportation network exploiting the electrical characterization
of the social cost variation is another interesting open issue. Future research lines
also include extending the analysis to the case of multiple interventions, and the
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relaxation of some assumptions, e.g., the single origin and destination, and the
assumption that the set of used links is not affected by the intervention.



Chapter 5

Conclusion

5.1 Summary and contribution

In this dissertation we study two different problems related to routing games on trans-
portation networks. We first study in Chapter 3 the stability of Wardrop equilibria
in heterogeneous games under evolutionary dynamics, focusing in particular on the
logit dynamics. Specifically, we characterize the behaviour of the logit dynamics
in the large noise and small noise regimes, and provide sufficient conditions on the
network topology and on the features of the Wardrop equilibria under which the
Wardrop equilibria of the game are asymptotically stable under the logit dynam-
ics. We then propose in Chapter 4 a network design problem where the planner
can improve one link of the network, with the goal of minimizing the total travel
time experienced on the network at equilibrium. We show that the problem can
be rephrased via an electrical formulation, and exploit such a characterization to
propose an efficient algorithm to select the optimal link to improve.

In the first part of the dissertation we provide the model’s description. We define
multigraphs to model transportation networks, and formalize routing games to model
user’s choices on transportation networks in a game-theoretic framework. We trace
a fundamental distinction between homogeneous routing games, where users takes
decisions based on identical user cost functions, and heterogeneous routing games,
that take into account the heterogeneity of users in the user cost functions, e.g., due
to different routing apps or different trade-offs between time and money.
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In the second part of the dissertation, we propose and analyse two problems
and establish novel theoretical results. In particular, in Chapter 3 we investigate
the stability of Wardrop equilibria under evolutionary dynamics in heterogeneous
routing games. Specifically, we prove the following results:

• for every heterogeneous routing game, the set of the fixed points of the corre-
sponding logit dynamics approaches a subset (called limit equilibria) of the
Wardrop equilibria of the game in the limit of vanishing noise, and show that
strict equilibria are always limit equilibria of the game;

• for every heterogeneous routing game on series of parallel multigraphs, every
exact target monotone dynamics (which include the logit dynamics) admits a
globally asymptotically stable fixed point;

• for every heterogeneous routing game, in the large noise regime the logit
dynamics admits a globally asymptotically stable fixed point on every multi-
graph;

• every strict equilibrium of heterogeneous routing games is locally asymptoti-
cally stable under the logit dynamics in the limit of vanishing noise.

In Chapter 4 we instead study network design problems. Our contribution is the
following:

• we show that, under a suitable regularity assumption on the Wardrop equilib-
rium of the game, which states that the support of the Wardrop equilibrium
does not vary with an intervention, the social cost variation corresponding to
intervention on a certain link may be rephrased in terms of electrical quantities
computed on a related resistor network, in particular in terms of the effective
resistance between the endpoints of the considered link;

• we show that our regularity assumption is without loss of generality if the
network is series-parallel and the inflow to the network is sufficiently large;

• we propose a method to approximate the effective resistance between two
neighbouring nodes of a resistor network, based on the local structure of the
network around the pair of nodes. We then provide theoretical guarantees on
the asymptotic tightness of our bounds on recurrent networks with an infinite
countable set of nodes;
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• we exploit the electrical characterization of the network design problem, and
our approximation method for the effective resistance to propose an algorithm
that selects the optimal link for the intervention performing only local compu-
tations, with a time-complexity that scales quasi-linearly with the size of the
network;

• we conduct numerical simulations on synthetic and real transportation net-
works to validate our methods.

5.2 Future research

Future research lines mainly rely on the generalization of the obtained the results
to more general settings and the relaxation of restrictive assumptions. On network
design problems, future research lines include:

• considering multiple interventions, and extend the analysis to the case of
multiple origin-destination pairs, and to heterogeneous routing games;

• the relaxation of the regularity assumption on the support of the Wardrop
equilibrium not varying after the intervention;

• the refinement of obtained results, e.g., integrating the asymptotic results on
the tightness of effective resistance approximation with theoretical results
that characterize the approximation error of the effective resistance for small
distances.

About the stability of evolutionary dynamics in routing games, we identify the
following main directions for the future:

• concerning the logit dynamics, the characterization of the asymptotic behaviour
of the dynamics on arbitrary multigraphs, e.g., to understand whether the logit
dynamics always converges to fixed points on arbitrary multigraphs;

• a complete characterization of the set of the limit equilibria, to understand
in case of multipla Wardrop equilibria which equilibria are selected by the
dynamics;
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• investigating the behaviour of other evolutionary dynamics;

• a generalization of the results to the case of multiple-origin destination pairs,
and integrating in the model the physical dynamics of mass, as done in [68, 69]
for homogeneous routing games.
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Appendix A

Additional notions on networks

We start by introducing undirected unweighted graphs in Section A.1. Then, we
define resistor networks in Section A.2. In Section A.3, we introduce and analyse
random walks on networks, and investigate relations between resistor networks and
random walks on networks.

A.1 Graphs

We start defining undirected weighted graphs.

Definition A.1. An undirected weighted graph is a triple (N ,L,W ), where

• N is the set of nodes, whose cardinality is N := |N |;

• L is the set of links, whose cardinality is L := |L|. Links are non-ordered pairs
of nodes {i, j}, i ̸= j.

• W ∈RN×N
+ is the symmetric adjacency matrix, i.e., W =W T .

A link {i, j} has to be meant as a symmetric connection between nodes i and
j, whose strength is measured by Wi j, with Wi j = 0 if {i, j} /∈ L, and Wi j ̸= 0
otherwise. The notion of path, two-terminal graph and network flow optimization
problems on graphs may be generalized from Chapter 2 for undirected weighted
graphs. Starting from W one can define the degree distribution w ∈RN

+ , the degree
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matrix D ∈ RN×N
+ , the Laplacian ∆ ∈ RN×N , the normalized adjacency matrix

P ∈RN×N
+ , and the total degree w ∈R+ of the network, which are respectively

w :=W1, D := diag(w), ∆ := D−W, P := D−1W, w := wT 1. (A.1)

Note that the normalized adjacency matrix P is entry-wise positive and row-stochastic,
i.e., P1 = 1.

Definition A.2 (Distance). The distance between two nodes i and j, denoted by
dist(i, j), is

dist(i, j) = min{d ≥ 0 : (W d)i j > 0}.

A graph is connected if for any i, j ∈N , there exists d > 0 such that (W d)i j > 0.

Definition A.3 (Neighborhood). Given a network and a subset of nodes K⊂N , The
neighborhood of K at distance d, denoted by Nd(K), is

Nd(K) := { j ∈N : ∃ k ∈ K s.t. dist( j,k)≤ d}. (A.2)

We also let ∂d(K) (with d > 0) denote the set of nodes belonging to Nd(K) \
Nd−1(K). Intuitively, ∂d(K) contains all the nodes that are at distance d from at
least a node k ∈ K, and at distance no less than d from every other node in K. We
now introduce as examples the 2d square grids.

Example A.1 (Undirected grids). The 2d square grid is an undirected network in
which every node n is characterized by a position (xn,yn), and l = {a,b} ∈ L if and
only if either i) xa = xb ±1, and ya = yb or ii) xa = xb and ya = yb ±1. In Figure A.1
it is highlighted the neighborhood at distance d of an arbitrary node o of the grid,
and the boundary ∂d(o) of such a set. Such a construction may be generalized to
define k-dimensional grids.

A.2 Resistor networks

We start by defining harmonic functions, which constitute a key tool to study resistor
networks. Then, we introduce resistor networks and study electrical current in
resistor networks by means of a network flow optimization problem. For a complete
reference on these topics we refer to [94, 91, 100].
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o

Fig. A.1 The bidimensional square grid. The green nodes belong to N2(o), the circular nodes
belong to ∂2(o)

.

Definition A.4. Let P be the normalized adjacency matrix of a graph (N ,L,W ) and
B ⊆N a subset of nodes called boundary. A harmonic function with respect to P is
a function h : N →R with boundary conditions hB, and

hi = ∑
j∈N

Pi jh j ∀i ∈N \B. (A.3)

In other words, a harmonic function satisfies the property that for any node
i ∈ N \B, the value hi is the weighted average of the value of the function in the
neighbooring nodes of i, whereas the value on the boundary B is given a priori. The
next proposition states that given P and the boundary conditions, harmonic functions
are unique.

Proposition A.1 ([94]). Let h : N → R and g : N → R two harmonic functions
with respect to P, with same boundary B ⊆N and equivalent boundary conditions
hB = gB. Then, hk = gk for every k ∈N .

With this tool in mind, we can now study resistor networks.

Definition A.5 (Resistor network). A resistor network is a undirected weighted
graph GR = (N ,L,W ) with weights Wi j corresponding to conductance between i
and j.

We usually denote resistor networks by GR. Every undirected weighted graph
may be interpreted as a resistor network. Without loss of generality, throughout
this dissertation we shall consider connected resistor networks. Indeed, if a resistor
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network is composed of two or more connected components, one can without loss of
generality consider every connected component as an independent network.

Given a resistor network and an exogenous flow ννν , the electrical current i flowing
along the links of the network is the result of the following network flow optimization:

i∗ = argmin
i∈RL
Bi=ννν

∑
e∈L

rei2e
2

, (A.4)

where re = 1/ωe is the resistance of the link. The term rei2e represents the power
dissipated on link e, so that (A.4) is equivalent to requiring that i∗ is the feasible
flow that minimizes the total power dissipation. Note that the solution i∗ is unique,
since the objective function is strictly convex. We restrict our analysis to exogenous
flows in the form ννν = I(δa −δb), which means that the current is injected in node
a and exits the system via node b. Using the techniques presented in Section 2.3
for network flow optimization problems, one can prove that the optimal lagrangian
multiplier γγγ∗ is harmonic with respect to P, where P is the normalized adjacency
matrix of the resistor network. Morevoer, by using Ohm’s laws, one can additionally
shows that γγγ∗ corresponds to the electrical potential measured on the network under
exogenous flow ννν . We shall denote such a potential by u ∈RN , and refer to [94] for
more details. We now introduce the notion of effective resistance, which proves very
important for traffic applications, as shown in Chapter 4.

Definition A.6 (Effective resistance). Given a resistor network and an exogenous
flow ννν = I(δa −δb), the effective resistance is the ratio (independent of I)

rab :=
ua −ub

I
.

Remark A.1. For coherence with the network flow optimization notation, we pre-
sented i∗ as the flow resulting under an exogenous flow I(δa − δb). However, in
circuit theory it is more common to fix the potential on a certain set of nodes instead
of the exogoneous flow. In particular, an equivalent flow i∗ is obtained by fixing
the potential on the nodes a and b, with ua = I · rab,ub = 0, instead of imposing the
exogenous flow.

We now introduce the notion of shorting and cutting resistor networks.
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Definition A.7 (Cutting and shorting). Consider a resistor network and a link e =
{i, j}∈L. Cutting the link e means removing the link e, which yields a transformation
from

GR1 = (N ,L,W1)→GR2 = (N ,L\ e,W2), (A.5)

with W2 =W1 − (W1)i jδiδ
T
j − (W1)i jδ jδ

T
i . Shorting two nodes i, j of a network has

two equivalent representations:

• merging the two nodes i, j in a unique node k, with Wkx =Wxk =Wix +Wjx for
every node x, or equivalently

• mantaining the same set of nodes, while adding an infinite conductance be-
tween the pair of shorted nodes.

Note that if GR2 is obtained by cutting link e in GR1 , then W2 ≼W1. Instead, if
GR2 is obtained by shorting two nodes i and j of GR1 , using the second representation
the resulting network satisfies W1 ≼W2.

Remark A.2. The notion of effective resistance may be generalized for set of nodes
by using the notion of shorting. Let A,B /∈N denote two disjoints subsets of nodes,
and consider the network obtained by shorting all the nodes in A in a unique node a,
and all the nodes in B in a unique node b. Then, the effective resistance between A
and B is the ratio

rab :=
ua −ub

I
,

where u is the potential distribution obtained on the shorted network under the
exogenous flow ννν = I(δa −δb).

The next lemma establish a monotonicity property between effective resistance
and conductance matrices.

Lemma A.1 (Rayleigh’s monotonicity laws [94]). Let GR1 = (N ,L1,W1) and GR2 =

(N ,L2,W2) be two resistor networks with the same set of nodes and weight matrices
satisfying W1 ≼ W2. Let r1i j and r2i j denote the effective resistance between an
arbitrary pair of nodes {i, j} in GR1 and GR2 respectively. Then, r1i j ≥ r2i j .

Remark A.3. An immediate consequence of Rayleigh’s monotonicity laws is that
shorting and cutting respectively decreases and increases the effective resistance
between an arbitrary pair of nodes, as the next example confirms.



A.3 Random walks on networks 115

a

b c

d

e1
e3

e2

e4

e6

e5

a

b c

d

e1 e2

e4

e6

e5

a

b

d

e1

e4

e6 e5

Fig. A.2 From left to right: the original network, the network cut in e3, and the network with
a and c shorted.

Example A.2. We consider the left network in Fig. A.2, a cut version of the network
and a shorted version of the network, with all the links carrying a unitary conduc-
tance. Let rbd , ru

bd and rl
bd denote the effective resistance between nodes b and d in

the three networks, respectively. By simple computations, one can show that

rbd = 8/13, ru
bd = 5/8, rl

bd = 3/5,

confirming that rl
bd ≤ rbd ≤ ru

bd , in accordance with Rayleigh’s monotonicity laws.

A.3 Random walks on networks

We start by defining the notion of discrete-time homogeneous Markov chains (MC),
and then introduce random walks on networks. Then, we provide useful notions on
random walks, and discuss how these notions may be extended to networks with
an infinite countable node set. Afterwards, we use results from harmonic functions
theory to establish connections between resistor networks and random walks over
the associated network. Let t ∈ N denote time. A Markov chain x(t) ∈ X is a
discrete-time process with no memory, i.e.,

P{x(t) = it |x(t −1) = it−1, · · · ,x(0) = i0}= P{x(t) = it |x(t −1) = it−1} ,

where P{·} is the probability that the event · occurs, X denotes the state space of the
Markov chain and i0, ..., it ∈ X . We let N denote the cardinality of X . We restrict
our analysis to homogeneous-time Markov chains, whose transition probabilities do
not depend on time. Let P ∈RN×N

+ denote the probability transition matrix of the
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MC, which is required to be row-stochastic. The element Pi j denotes the probability
of transition from i to j, i.e.,

Pi j := P{x(t +1) = j|x(t) = i} . (A.6)

Let πππ(t) ∈ RN
+ denote the probability distribution of the Markov chain at time t,

whose element πi(t) := P{x(t) = i} is the probability that the Markov chain is in
state i at time t. The evolution of πππ in compact form reads

πππ(t +1) = PT
πππ(t). (A.7)

A MC is fully characterized by its state space X , a transition probability matrix P,
and a non-negative initial distribution πππ(0) such that πππ(0)T 1 = 1. Note that the
row-stochasticity of P is required to preserve the normalization of πππ(t), since for
every row-stochastic P

1T
πππ(t) = 1T (PT )t

πππ(0) = 1T
πππ(0) = 1. (A.8)

We now introduce some important notions on Markov chains.

Definition A.8 (Invariant distribution). The distribution πππ satisfying πππ = PT πππ and
πππT 1 = 1 is called invariant distribution.

Note that the invariant distribution of a MC is unique because of Perron-Frobenius
theory on entry-wise non-negative matrices [101–103].

Definition A.9 (Reversible MC). A MC is said to be reversible with respect to a
distribution πππ if for every i, j ∈ X ,

πiPi j = π jPji. (A.9)

Note that the unique normalized distribution satisfying (A.9) is the invariant
distribution.

Definition A.10 (Irreducible MC). A Markov chain is irreducible if for any i, j there
exists d ≥ 0 such that (Pd)i j ̸= 0.

Note that the notion of irreducibility in Markov chain theory resembles the notion
of strongly connectedness in graph theory. This relation shall be made clearer when
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studying random walks over networks. We now introduce some random variables
that are of interest within this dissertation.

Definition A.11 (Hitting time). The hitting time TI is a random variable that indi-
cates the first time t ≥ 0 in which the MC hits I ⊆ X , i.e.,

TI := min{t ≥ 0 : x(t) ∈ I} (A.10)

Definition A.12 (Return time). The return time T+
I is a random variable that indi-

cates the first time t > 0 that the MC hits I ⊆ X , i.e.,

T+
I := min{t > 0 : x(t) ∈ I} (A.11)

Note that the hitting time TI and return time T+
I coincide if x(0) /∈ I. Return

time differ from hitting time when x(0) ∈ I, since TI = 0 and T+
I is the first time

such that the random walk returns in I, which satisfies T+
I > 0 by construction. We

let pi(Z) denote the probability that an arbitrary event Z occurs given that the MC
starts in i, i.e., with πππ(0) = δi.

Definition A.13 (Escape probability). Let I ⊆ X be a subset of states. The escape
probability p j(TI < T+

j ) ∈ [0,1] is the probability that the MC starting in j hits the
subset I before returning in j.

Definition A.14 (Green’s function). Let G ∈ RN×N denote the Green’s function
associated to P, defined as

G :=
∞

∑
t=0

Pt , (A.12)

whose element Gi j indicates the expected number of times that the random walk
starting in i hits j,

We next see that Markov chains are deeply connected to resistor networks, which
are the subject of Section A.2. Throughout the dissertation we shall also handle
resistor networks with an infinite countable set of nodes. To this aim, we here
introduce some notions related to Markov chains with an infinite countable state set.
Let us start with the following definition.

Definition A.15 (Recurrent and transient state). A state i of a Markov chain is said
to be recurrent if pi(T+

i <+∞) = 1, otherwise it is called transient.
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Lemma A.2 ([94]). A state i of a Markov chain is recurrent if and only if Gii =+∞.

Proof. Let vi denote the number of visits in i starting from i. By construction,

E[vi] = Gii. (A.13)

Also, note that since the Markov chain is time-homogeneous,

P{vi > r+1}= P{vi > r} · pi(T+
i <+∞} =⇒ P{vi > r}=

(
pi(T+

i <+∞)
)r+1

.

If i is a recurrent state, then pi(T+
i <+∞) = 1 and limr→+∞ P{vi > r}= 1, yielding

Gii = E[vi] = +∞. Conversely, if i is transient, then pi(T+
i <+∞)< 1, implying

Gii =
∞

∑
r=0

r
(

pi(T+
i <+∞)

)r (1− pi(T+
i <+∞)

)
=

pi(T+
i <+∞)

1− pi(T+
i <+∞)

<+∞,

concluding the proof.

Proposition A.2 ([104]). In irreducible Markov chains, either all the states are
transient or all the states are recurrent.

Proof. Let us assume that i is a transient state. Since the MC is irreducible, for every
j ∈N there exist m and n such that (Pm)i j > 0, (Pn)i j > 0, and

(Pm+r+n)ii ≥ (Pm)i j(Pr) j j(Pn) ji, (A.14)

yielding

G j j =
∞

∑
r=0

(Pr) j j ≤
1

(Pm)i j(Pn) ji

∞

∑
r=0

(Pm+r+n)ii ≤
Gii

(Pm)i j(Pn) ji
<+∞, (A.15)

which implies that every state j is transient.

Note that due the previous results, all the states of irreducible Markov chains with
finite state set are recurrent. Proposition A.2 allows for a classification of Markov
chains, instead of single states, as recurrent or transient.

Definition A.16 (Recurrent Markov chain). An irreducible Markov chain is recurrent
if, for every starting state, it visits its starting state infinitely often with probability
one, otherwise it is transient.
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We now explore the connections between Markov chains and networks. In
particular, we define and analyse random walks on resistor networks.

Definition A.17. Given a resistor network G = (N ,L,W ), a random walk over the
network is a MC with state space X =N and transition matrix P = D−1W.

We here restrict our analysis to irreducible reversible random walks. As shown
in the next proposition, the assumption of reversibility is without loss of generality
in resistor networks.

Proposition A.3. Random walks over resistor networks are reversible with invariant
distribution πππ = w/w.

Proof. We give a constructive proof. First, notice that the elements of w/w sum to 1
by construction. Moreover, since Wi j =Wji, it holds:

πiPi j =
wi

w
Pi j =

Wi j

w
=

Wji

w
=

w j

w
Pji = π jPji, (A.16)

concluding the proof.

Consider a network, and let K ⊂ N be a subset of nodes, with cardinality Nk.
Given a random walk on the network, one can define the random walk killed in
K, whose transition matrix is KP ∈ R(N\K)×(N\K) by removing from P the rows
and the columns referring to nodes k ∈ K. Note that KP is substochastic because
of strong connectedness of the network, which in turn implies the existence of at
least a node j ∈N \K and a node k ∈ K such that Pjk,Pk j ̸= 0. The killed random
walk can be thought of as a transient random walk in which a cemetery is created
in nodes K, i.e., every time the random walk hits K it gets absorbed. Note that an
invariant distribution for KP does not exist. Indeed, the unique distribution satisfying
πππ = (KP)T πππ is πππ = 0, which however does not sum to one and corresponds to the
case where all the mass has been absorbed in K. Analogously to standard Markov
chains, we define the Green’s function KG ∈ R(N\K)×(N\K)

+ of the killed random
walk KP by

KG :=
∞

∑
t=0

(KP)t = (I−KP)−1. (A.17)

The last inequality follows from the fact that KP is substochastic and irreducible.
Hence, it has spectral radius ρ < 1 and (I−KP)−1 = ∑

∞
t=0(KP)t (see [90]). Since
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((KP)t)i j is the probability that the killed random walk starting from i is in j after t
steps, KGi j indicates the expected number of times that the killed random walk visits
j starting from i before hitting K. By convention, we assume

KGk j = KG jk = 0, ∀k ∈ K, j ∈N . (A.18)

An equivalent formulation involves the definition of KP̂ ∈ RN×N , obtained by
setting to zero the rows and the columns of P referring to elements in K. Thus, the
associated Green’s function KĜ ∈RN×N satisfies

KĜk j = KĜ jk = 0, ∀k ∈ K, j ∈N , (A.19)

by construction and KĜi j = KGi j for every i, j ∈ N \K. Both these formulations
shall be used within this dissertation. Based on the properties of the associated
random walk, we define the notion of of recurrent network, which is of interest when
studying the limit of infinite networks.

Definition A.18 (Recurrent network). A resistor network is called recurrent if the
random walk P = D−1W on the network is recurrent.

Every finite connected network is recurrent. As shown in the next examples, this
is not true for infinite networks. An equivalent characterization of infinite recurrent
networks, provided in [94, Proposition 21.3] is that in recurrent networks

lim
d→+∞

pi(T∂d(i) < Tj) = 0 ∀i, j ∈N , (A.20)

where we recall that ∂d(i) indicates the set of nodes at distance d from node i.
Observe that, to hit any node at distance d + 1, the random walk starting from i
has to hit at least a node at distance d. Hence, the sequence

{
pi(T∂d(i) < Tj)

}+∞

d=1 is
non-increasing in d and the limit is well defined. Eq. (A.20) means that in recurrent
networks the probability that the random walk gets at infinite distance vanishes. In
the last part of the section we establish useful connections between resistor networks
and random walks over the corresponding network. The next proposition states that
the Green’s function is harmonic with respect to P and is therefore equivalent to the
potential u, apart from a proportionality constant.

Proposition A.4 ([94]). Let GR be a resistor network, and let u be the potential
distribution under boundary conditions ua = 1, ub = 0. Consider the Green’s function
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of the associated random walk killed in b. The function k → bGka is harmonic with
respect to P for every a,b ∈N . Furthermore,

uk =
bGka

bGaa
, ∀k ∈N . (A.21)

Proof. Note that bGka is the expected number of visits in a starting from k before
hitting b. Conditioning on the first step of the random walk, one gets

bGka = ∑
j

bG jaPk j, (A.22)

which implies that the function k → bGka is harmonic with respect to P, and thus
also k → bGka/bGaa. Since also u is harmonic with respect to P, it remains only to
prove that the boundary conditions are equivalent, and then use Proposition A.1 to
establish the equivalence between the two quantities. Since

ua = 1 =
bGaa

bGaa
, ub = 0 =

bGba

bGaa
,

boundary conditions are equivalent, concluding the proof.

Many quantities of interest related to dynamics over networks are harmonic,
e.g., escape probabilities in random walks or asymptotic equilibria of DeGroot
dynamics in presence of stubborn agents [105]. In particular, by Proposition A.4 and
Proposition A.1, one can prove that potential distribution and the Green’s function

bG.a are proportional to asymptotic opinions of agents under DeGroot dynamics when
agents a and b are stubborn with opinion 1 and 0 respectively. These parallelisms
may be exploited to borrow results from other fields to analyse resistor networks.
Another relation of interest between effective resistance between a pair of nodes in a
resistor networks and escape probabilities and Green’s function on the correspondent
network is provided in the next proposition.

Proposition A.5 ([106]). Let GR be a resistor network and let P = D−1W be the
random walk on it. Then, for an arbitrary node k, and for any pair of distinct nodes
(a,b), it holds

kGaa − kGba

Daa
+

kGbb − kGab

Dbb
=

bGaa

Daa
=

1
Daa pa(Tb < T+

a )
= rab, (A.23)
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Example A.3 (Grids). We consider an infinite 2d square grid of resistors, and assign
to every pair of adjacent nodes a unitary conductance. Using symmetry arguments,
it can be proved that the effective resistance between an arbitrary pair of adjacent
nodes is 1/2 [107]. Moreover, one can show that the infinite 2d square grid is
recurrent. The proof exploits the analogy between escape probability and effective
resistance established in Proposition A.5. In particular, it can be proved that the
network is transient if and only if the effective resistance between an arbitrary node
n and the set ∂d(n) diverges in the limit of infinite d. For more details, see [100,
Sections 2.1.6 and 2.2.3]. Interestingly, one can also prove that in contrast with the
2-dimensional grid, d-grids with d ≥ 3 are transient. The proof of this statement
may be found in [94, Example 21.9].



Appendix B

Continuous-time dynamical systems

We first introduce the notion of continuous-time dynamical system. Then, we define
fixed points of continuous-time dynamical systems and give some definitions on
stability of fixed points. Afterwards, we state Lyapunov’s and LaSalle’s results.
Finally, we focus on contractive systems and provide the proof of Proposition 3.2,
which establishes a sufficient condition under which a continuous-time dynamical
system is contractive.

A continuous-time dynamical system is a pair (X ,g), where X ⊆ Rm, and g :
X → Rm is a vector field of class Cr (r ≥ 1). Given a continuous-time dynamical
system and an initial condition x0, a trajectory of the system is an application t → x(t)
such that

ẋ(t) = g(x(t)), x(0) = x0. (B.1)

The assumptions on g ensure the uniqueness of the trajectory for every initial con-
dition. A point x∗ such that g(x∗) = 0 is called a fixed point of the system. Note
by (B.1) that if x0 = x∗, then x(t) = x∗ for every t. Although the expression fixed
point is more commonly used for discrete-time systems and equilibrium point for
continuous-time dynamical systems, we preferred to use this notation to distinguish
equilibria of continuous-time dynamical systems from Wardrop equilibria of routing
games. We now provide some definitions concerning stability of fixed points.

Definition B.1 (Stable fixed point). A fixed point x∗ is stable, if for every ε > 0 there
exists δ > 0 such that for every initial condition satisfying ||x0 −x∗||< δ , then the
corresponding trajectory satisfies ||x(t)−x∗||< ε for every t.
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Thus, a fixed point is stable if any trajectory that starts arbitrarily close to the
fixed point remains close to the fixed point. The notion of asymptotic stability
additionally requires that the trajectory converges to the fixed point.

Definition B.2 (Asymptotically stable fixed point). A fixed point x∗ is asymptotically
stable if it is stable and if there exists δ > 0 such that for any initial condition
satisfying ||x0 −x∗||< δ the corresponding trajectory satisfies

lim
t→+∞

x(t) = x∗. (B.2)

The following notion provides a tractable tool to establish asymptotic stability of
fixed points.

Definition B.3 (Linearly stable fixed point). Let x∗ be a fixed point of the system
(X ,g), and let J|x∗ the Jacobian of g computed in x∗. Then, x∗ is linearly stable if
all the eigenvalues of J|x∗ have negative real part.

Proposition B.1. Linearly stable fixed points are asymptotically stable.

Proof. See [108, Theorem 3.7].

The following definitions concern global stability properties.

Definition B.4 (Globally asymptotically stable fixed point). Let x∗ be an asymptoti-
cally stable fixed point of a continuous-time dynamical system (X ,g), and let C ⊆ X
be the set of points such that for every x0 ∈ C

lim
t→+∞

x(t) = x∗. (B.3)

If C = X , x∗ is a globally asymptotically stable fixed point.

Definition B.5 (Globally exponentially stable fixed point). Let x∗ be a globally
asymptotically stable fixed point of a continuous-time dynamical system (X ,g).
Given a norm || · ||, x∗ is globally exponentially stable with rate c > 0 if, for every x0,
there exists a > 0 such that

||x(t)−x∗|| ≤ a||x0 −x∗||e−ct . (B.4)

We now provide two fundamental results on asymptotic behaviour of continuous-
time dynamical systems.
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Proposition B.2 (Lyapunov global stability criterion). Consider a continuous-time
dynamical system (X ,g). Let x∗ be a fixed point, and let v : X →R satisfy v(x∗) = 0,
v(x)> 0 for every x ̸= x∗, and

v̇(x(t)) = ∑
i

∂v
∂xi

gi(x)< 0. (B.5)

If X is unbounded, assume additionally that v is radially unbounded. Then, x∗ is a
globally asymptotically stable fixed point.

Analogous criteria for local stability are established in the literature. The function
v is called (global) Lyapunov function. Notice that the derivative of v must be strictly
negative. LaSalle’s invariance principle instead states a convergence result that holds
also for non-strict Lyapunov functions. Before establishing LaSalle’s invariance
principle, we give the following definitions.

Definition B.6 (Invariant set). Consider a continuous-time dynamical system (X ,g).
A subset S ⊆X is g-invariant if, under the continuous-time dynamical system (X ,g),
x0 ∈ S implies x(t) ∈ S for every t ≥ 0.

Definition B.7 (Convergence to set). We say that x(t) approaches a set S as t →+∞,
indicated by x(t) t→+∞−−−−→S, if

lim
t→+∞

(
inf
s∈S

||x(t)− s||
)
= 0. (B.6)

Definition B.8. Let X be a compact space and (Xn)n be a sequence of compact sets.
We say that limn→+∞Xn = X if the following two conditions hold:

1. for every x ∈ X , there exists a sequence (xn)n such that xn ∈ Xn for every n
and limn→+∞ xn = x;

2. for every converging sequence (xn)n, with xn ∈ Xn for every n, limn→+∞ xn =

x ∈ X .

Proposition B.3 (LaSalle’s invariance principle [109]). Consider a continuous-time
dynamical system (X ,g), and let S ⊆ X be g-invariant. Let v(x(t)) a Lyapunov
function in S, i.e., v̇(x(t))≤ 0 for every x(t) ∈ S, and let Ω ⊆ S the largest set of
points x ∈ S such that v̇(x) = 0. Let M⊆ Ω be the largest invariant set contained
in Ω. Then, for every initial condition x0 ∈ S, x(t) t→+∞−−−−→M.
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Definition B.9 (Matrix measure). Given a norm || · || and a matrix A, the associated
matrix measure is

µ(A) := lim
h→0+

||I+hA||− I
h

. (B.7)

Some of popular matrix measures include:

µ1(A) = max
j∈{1,...,n}

(
a j j +

n

∑
i=1,i ̸= j

|ai j|

)
,

µ2(A) = λmax

(
A+AT

2

)
,

µ∞(A) = max
i∈{1,...,n}

(
aii +

n

∑
j=1, j ̸=i

|ai j|

)
.

We now focus on contractive systems. To this aim, we first define the notion of
infinitesimal contractivity.

Definition B.10 (Infinitesimal contractivity). Consider a vector field g, and let
J denote its Jacobian matrix. The continuous-time dynamical system (X ,g) is
infinitesimally contracting on a set C ⊆ X if there exist a norm || · || with associated
measure µ , and a constant c > 0 such that

µ(J(x))≤−c for all x ∈ C. (B.8)

We can now prove Proposition 3.2, which states that infinitesimal contractivity
implies the existence of a globally exponentially stable fixed point.
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Proof of Proposition 3.2

For simplicity of notation we omit the dependence on t. By definition of the l1-norm
and the linearity of the derivative, we get

d
dt
∥x−y∥1 =

d
dt ∑

i
|xi − yi|= ∑

i

d
dt
|xi − yi|

=∑
i

sign(xi − yi)(ẋi − ẏi)

=∑
i

sign(xi − yi)(gi(x)−gi(y))

=∑
i

sign(xi − yi)(gi(y+h)−gi(y)),

(B.9)

where x = y+h. From

gi(y+h)−gi(y) =
∫ 1

0

dgi(y+ τh)
dτ

dτ

=
∫ 1

0
∑

j

∂gi

∂y j
h jdτ,

thus (B.9) is equal to ∫ 1

0
∑

i
sign(hi)∑

j

∂gi

∂ z j
h jdτ.

It then holds

∑
i

sign(hi)∑
j

∂gi

∂y j
h j = ∑

i

(
∑
j ̸=i

∂gi

∂y j
h jsign(hi)+

∂gi

∂yi
|hi|

)

≤ ∑
i

(
∑
j ̸=i

∣∣∣∣∂gi

∂y j

∣∣∣∣ |h j|+
∂gi

∂yi
|hi|

)

= ∑
j

∑
i ̸= j

∣∣∣∣∂gi

∂y j

∣∣∣∣ |h j|+∑
j

∂g j

∂y j
|h j|

= ∑
j
|h j|

(
∑
i ̸= j

∣∣∣∣∂gi

∂y j

∣∣∣∣+ ∂g j

∂y j

)
≤ ||h||1µ1(J) = ||x−y||1µ1(J).
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Plugging this in (B.9), one gets

d
dt
∥x−y∥1 ≤ ||x−y||1µ1(J)≤−c||x−y||1, (B.10)

which implies (3.30). For the point 2), see [81, Theorem 13].

We finally provide the definition of Metzler matrix.

Definition B.11 (Metzler). A matrix A ∈ Rn×n is Metzler if all the non-diagonal
elements are non-negative, i.e., for every i ̸= j, Ai j ≥ 0.



Appendix C

Logit dynamics in potential games

We here prove a theoretical result on the asymptotic behaviour of the logit dynamics
in potential games. Such a result is not original (see [17, Theorem 7.1.4]), however
we here propose an alternative proof for the statement. Although the result holds for
arbitrary potential games, we keep the notation of routing games coherently with the
rest of the dissertation.

Proposition C.1. Consider a potential game with potential V (z), and consider the
logit(η) defined in (3.13). Let

Vη(z) :=V (z)− 1
η

H(z), (C.1)

and
Ωη := {z ∈ Z : τ

p
Θ

p
i (z,η) = zp

i , ∀p ∈ P, i ∈R}, (C.2)

be the set of fixed points of logit(η), where Θ
p
i (z,η) are the interaction kernels

defined in (3.12). Then

1. all points in Ωη are stationary points of Vη in Z;

2. d
dtVη(z(t)) =− 1

η ∑p∈P τ p
∑i∈R

(
lnΘ

p
i (z)− ln

(
zp

i
τ p

))(
Θ

p
i (z)−

zp
i

τ p

)
≤ 0,

3. For every initial condition z(0), z(t) t→+∞−−−−→ Ωη .
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Proof. 1) To prove point 1 we show that if z ∈ Ωη , then for every i, j ∈R and p ∈ P

∂Vη

∂ zp
i
−

∂Vη

∂ zp
j
= 0. (C.3)

To this aim, note that

∂Vη

∂ zp
i
−

∂Vη

∂ zp
j
= cp

i (z)− cp
j (z)+

1
η

(
1+ ln

zp
i

τ p −1− ln
zp

j

τ p

)

=
1
η
(lnΘ

p
j (z)− lnΘ

p
i (z))+

1
η

(
ln

zp
i

τ p − ln
zp

j

τ p

)

=
1
η

(
lnΘ

p
j (z)− ln

zp
j

τ p

)
− 1

η

(
lnΘ

p
i (z)− ln

zp
i

τ p

)
= 0.

(C.4)

where the first equivalence follows from the definition of potential, the second one
from the explicit form of the interaction kernels, and the last one from z ∈ Ωη .

2) Since the logit dynamics is exact target, from Lemma 3.1 it holds for every
population p

∑
i∈R

(τ p
Θ

p
i (z)− zp

i ) = 0. (C.5)

Using repeatedly (C.5),

d
dt

V (z(t)) = ∑
p∈P

∑
i∈R

∂V
∂ zp

i
(τ p

Θ
p
i (z)− zp

i )

= ∑
p∈P

∑
i∈R

(
∂V
∂ zp

i
− ∂V

∂ zp
j

)
(τ p

Θ
p
i (z)− zp

i )

= ∑
p∈P

∑
i∈R

(
cp

i − cp
j

)
(τ p

Θ
p
i (z)− zp

i )

= ∑
p∈P

∑
i∈R

cp
i (τ

p
Θ

p
i (z)− zp

i )

=− 1
η

∑
p∈P

∑
i∈R

lnΘ
p
i · (τ

p
Θ

p
i (z)− zp

i ),

(C.6)
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where the third equivalence follows from the definition of potential, and the last one
from the explicit form of the interaction kernels. Moreover,

d
dt

H(z(t)) = ∑
p∈P

∑
i∈R

∂H
∂ zp

i
(τ p

Θ
p
i (z)− zp

i )

=− ∑
p∈P

∑
i∈R

ln
(

zp
i

τ p

)
(τ p

Θ
p
i (z)− zp

i ).

(C.7)

Plugging (C.6) and (C.7) in (C.1), we finally get

d
dt

Vη(z(t)) =− 1
η

∑
p∈P

τ
p
∑
i∈R

(
lnΘ

p
i (z)− ln

(
zp

i
τ p

))(
Θ

p
i (z)−

zp
i

τ p

)
≤ 0,

(C.8)
which proves point 2.

3) Since logit dynamics is exact target, Z is invariant due to Lemma 3.1. Thus,
point 3 follows from points 1 and 2, and from LaSalle’s invariance principle (see
Proposition B.3).



Appendix D

Double tree network

We prove that the double tree network in Figure D.1 is not recurrent by showing that
pi(Ti < T∂d

) is equivalent to the same quantity computed for the biased random walk.
Indeed, let us identify all the nodes in the left (right) tree that are at distance d from
i (or j) in a unique node. Then, the probability of going from a node at distance d
from i to a node at distance d+1 and d−1 are 2/3 and 1/3, respectively. Hence, the
double tree is equivalent to a biased random walk on a line as in Figure D.2. Since
the biased random walk is transient (see [94]), also the double tree is transient. We
now show that also Term 2 does not vanishes in the limit of infinite distance. Since
in the original network and in the cut network there are no paths between i and j
except the link l joining i and j (see Fig. D.4 (a) and (b)),

ri j = rUd
i j = 1.

i j

Fig. D.1 The double tree is an infinite non-recurrent network. On this network limd→+∞ εi jd =
1/3.
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i j
1/3

1/3

2/3

2/3

2/3

2/3

2/3

2/3 1/3

1/3

1/3

1/3

1/3

1/3

Fig. D.2 The double tree network is equivalent to a biased random walk.

(a)

i j

(b)

i j

(c)

i j

s

(d)

i j

Fig. D.3 From above to below: (a) the double tree network; (b) the cut tree network at
distance 2 from {i, j}; (c) the shorted tree network at distance 2 from {i, j}; (d) a network
equivalent to the shorted one. In red, the nodes at distance 2 from {i, j}.
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r(0) = 3

i j

r(1) = 2+ r(0)
2

i j

1
rL2

i j

= 2
r(1) +1

Fig. D.4 The network in Fig. D.3(d) is series-parallel. Then, it can be obtained by recursively
making parallel and series compositions of series-parallel network.

Computing rLd
i j is more involved. First, referring to Figure D.3, we note that, because

of the symmetry of the network, the effective resistance between i and j in the
shorted network (c), which is rLd

i j , is equivalent to the effective resistance in (d).
Indeed, if we set potential ui = 1 and u j = 0, because of symmetry every yellow
node has potential 1/2. Thus, adding infinite conductance between all of them, i.e.,
shorting them, does not affect the electrical current in the network (the procedure
of shorting nodes with same potential is also known in the literature as gluing, see
[94]), and therefore the effective resistance. The network (d) is series-parallel, so
that the effective resistance can be computed iteratively. Specifically, we refer to
Figure D.4 to explain the recursion that leads to rLd

i j . From top to bottom, it note that
the first network has effective resistance between the two blue nodes equal to 3. The
second network is the parallel composition of two of these, in series with two single
links. This procedure is iteratively repeated d −1 times (in Figure D.4 only once,
since d = 2), leading to a network that, composed in parallel with a copy of itself
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and with a single link, is GLd
i j . Hence, rLd

i j is the result of the following recursion.
r(0) = 3,

r(n) = 2+ r(n−1)
2 , d > n ≥ 1,

rLd
i j = (1+ 2

r(d−1))
−1,

which has solution r(n) = (2d+2 −1)/2d, d > n ≥ 1,

rLd
i j = 2d+1−1

2d+1+2d−1
d→+∞−−−−→ 2

3 .
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